Explaining and predicting human behavior and social dynamics in simulated virtual worlds: reproducibility, generalizability, and robustness of causal discovery methods


Ground Truth program was designed to evaluate social science modeling approaches using simulation test beds with ground truth intentionally and systematically embedded to understand and model complex Human Domain systems and their dynamics. Our multidisciplinary team of data scientists, statisticians, experts in Artificial Intelligence (AI) and visual analytics had a unique role on the program to investigate accuracy, reproducibility, generalizability, and robustness of the state-of-the-art (SOTA) causal structure learning approaches applied to fully observed and sampled simulated data across virtual worlds. In addition, we analyzed the feasibility of using machine learning models to predict future social behavior with and without causal knowledge explicitly embedded. In this paper, we first present our causal modeling approach to discover the causal structure of four virtual worlds produced by the simulation teams—Urban Life, Financial Governance, Disaster and Geopolitical Conflict. Our approach adapts the state of-the-art causal discovery (including ensemble models), machine learning, data analytics, and visualization techniques to allow a human-machine team to reverse engineer the true causal relations from sampled and fully observed data. We next present our reproducibility analysis of two research methods team’s performance using a range of causal discovery models applied to both sampled and fully observed data, and analyze their effectiveness and limitations. We further investigate the generalizability and robustness to sampling of the SOTA causal discovery approaches on additional simulated datasets with known ground truth. Our results reveal the limitations of existing causal modeling approaches when applied to large-scale, noisy, high-dimensional data with unobserved variables and unknown relationships between them. We show that the SOTA causal models explored in our experiments are not designed to take advantage from vasts amounts of data and have difficulty recovering ground truth when latent confounders are present; they do not generalize well across simulation scenarios and are not robust to sampling; they are vulnerable to data and modeling assumptions, and therefore, the results are hard to reproduce. Finally, when we outline lessons learned and provide recommendations to improve models for causal discovery and prediction of human social behavior from observational data, we highlight the importance of learning data to knowledge representations or transformations to improve causal discovery and describe the benefit of causal feature selection for predictive and prescriptive modeling

Computational and Mathematical Organization Theory