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Abstract
Ground Truth program was designed to evaluate social science modeling approaches 
using simulation test beds with ground truth intentionally and systematically embed-
ded to understand and model complex Human Domain systems and their dynamics 
Lazer et al. (Science 369:1060–1062, 2020). Our multidisciplinary team of data sci-
entists, statisticians, experts in Artificial Intelligence (AI) and visual analytics had a 
unique role on the program to investigate accuracy, reproducibility, generalizability, 
and robustness of the state-of-the-art (SOTA) causal structure learning approaches 
applied to fully observed and sampled simulated data across virtual worlds. In addi-
tion, we analyzed the feasibility of using machine learning models to predict future 
social behavior with and without causal knowledge explicitly embedded. In this 
paper, we first present our causal modeling approach to discover the causal struc-
ture of four virtual worlds produced by the simulation teams—Urban Life, Finan-
cial Governance, Disaster and Geopolitical Conflict. Our approach adapts the state-
of-the-art causal discovery (including ensemble models), machine learning, data 
analytics, and visualization techniques to allow a human-machine team to reverse-
engineer the true causal relations from sampled and fully observed data. We next 
present our reproducibility analysis of two research methods team’s performance 
using a range of causal discovery models applied to both sampled and fully observed 
data, and analyze their effectiveness and limitations. We further investigate the gen-
eralizability and robustness to sampling of the SOTA causal discovery approaches 
on additional simulated datasets with known ground truth. Our results reveal the 
limitations of existing causal modeling approaches when applied to large-scale, 
noisy, high-dimensional data with unobserved variables and unknown relationships 
between them. We show that the SOTA causal models explored in our experiments 
are not designed to take advantage from vasts amounts of data and have difficulty 
recovering ground truth when latent confounders are present; they do not generalize 
well across simulation scenarios and are not robust to sampling; they are vulner-
able to data and modeling assumptions, and therefore, the results are hard to repro-
duce. Finally, when we outline lessons learned and provide recommendations to 
improve models for causal discovery and prediction of human social behavior from 
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observational data, we highlight the importance of learning data to knowledge repre-
sentations or transformations to improve causal discovery and describe the benefit of 
causal feature selection for predictive and prescriptive modeling.

Keywords  Causal discovery · Causal structure learning · Ensemble models · 
Reproducibility · Generalizability · Robustness · Predictive modeling · Machine 
learning · Data science

1  Introduction

The ability to learn causal relationships from observational data is considered a 
significant component of human-level intelligence and can serve as one of the 
foundations of artificial intelligence (AI) (Bengio 2019; Chollet 2020; Pearl 2019; 
Lake et al. 2017). Understanding how latent properties of the data, including vari-
ous sources of bias effect causal discovery accuracy, generalizability (Yarkoni 
2019), reproducibility (Munafò et al. 2017), and robustness (Kummerfeld and Rix 
2019; Olteanu et  al. 2019) is essential to make progress and improve the exist-
ing approaches for causal discovery across many domains such as earth sciences, 
biology, economy (Runge et  al. 2019; Glymour et  al. 2019; Athey 2015), and 
social sciences (Lazer et al. 2020; Watts et al. 2018; Hofman et al. 2017).

Many different algorithms for causal discovery (aka causal structure learning) 
have been developed over the last twenty years (Guo et  al. 2020; Pearl 2009). 
Existing approaches broadly fall into two categories: constraint-based (Spirtes 
et al. 2000; Yu et al. 2016 and score-based Chickering 2002).

–	 Constraint-based methods subject causal relationships to a set of constraints, 
for example conditional dependencies among the variables.

–	 Score-based methods discover causal relationships by optimizing a scoring 
function.

While each causal structure learning algorithm often relies on assumptions about 
the data generation process and underlying causal structure Greenland and Man-
sournia 2015 as shown in Table 1, it cannot be known from the data alone whether 
these assumptions are satisfied. Some causal discovery methods may tend to per-
form better on data from specific domains with different complexity and data gen-
erated from certain types of causal graph structures (e.g., sparser graphs) but such 
properties are obviously unknown a priori. Therefore, given a large number of 
possible causal modeling approaches, it is not clear which one to use in any given 
situation and whether a single approach will generalize across datasets and tasks 
with different complexities (Yarkoni 2019), which is especially important for the 
Human Domain Lazer et al. (2020). It is also important to investigate the relation-
ship between causal model accuracy and robustness to sampling, and study the 
reproducibility of the SOTA causal modeling techniques (Stodden et al. 2016).
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Our contributions to the Ground Truth program are presented below. We first 
outline our causal discovery workflow and discuss scenario-specific representation 
learning (node discovery) and modeling (link discovery) experimental decisions in 
Sect. 2. Then, acting as a reasonable upper bound, in addition to being a reproduc-
ibility control to other research methods teams’ approaches, we recover the ground 
truth signal from the full simulation output to determine whether it was not possible 
to uncover the ground truth due to methodological failures or due to the absence of 
usable ground truth signal in the sampled simulation output and describe our find-
ings in Sects.  2.3 and 2.4. Next we investigate robustness and generalizability of 
individual causal discovery algorithms and our causal ensemble approach on a range 
of simulated datasets (Saldanha et al. 2020) in additional to four virtual worlds pro-
duced by the simulation teams in Sect. 3. We further present and evaluate our pre-
dictive approach that takes advantage of machine learning and deep learning mod-
els to anticipate human behavior and social dynamics in the Human Domain using 
sampled data collected by research methods teams from four virtual worlds and 
additional simulated datasets produced by our team in Sect. 4. Finally, we conclude 
by summarizing our key results on reproducibility, generalizability, and robust-
ness analysis of causal discovery approaches and data-driven research methods to 
explain, and predict human behavior and social dynamics in the Human Domain.

2 � Causal discovery in the human domain: selected methods 
and limitations

This section presents our approach to causal structure learning of causal struc-
ture learning from fully observable and sampled data across four simulation sce-
narios provided under the GT program (Urban, Power, Disaster, and Conflict), 
that served as proxies for the real world. Our main objective for the causal struc-
ture learning (aka the explain task) was to analyze the existing causal discovery 

Table 1   Table of assumptions defined in Greenland and Mansournia (2015) for example causal discovery 
algorithms ordered by score-based versus constraint-based approaches

×—indicates necessary assumption. ◦—indicates sufficient assumption

Algorithm Causal 
suffi-
ciency

Causal 
faithful-
ness

Causal 
markov

Gaussian 
data

Non-gauss. 
data

Multi-
nomial 
data

Linear 
relations.

Score CAM × ×

CCDr × × × ×

GES × × × ◦ ◦

LiNGAM × × × ×

Constr. GS × × × ◦ ◦

MMPC × × × ◦ ◦

PC × × × ◦ ◦

IAMB × × × ◦ ◦
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approaches’ limitations when applied to large-scale, noisy, high-dimensional 
data with unobserved variables (aka unknown unknowns), mixed data types, and 
unknown statistical dependencies between them that describe complex social 
dynamics. More specifically, we focused on answering research questions below.

RQ1:	� Is it possible to design generalizable workflows for causal discovery of com-
plex social behavior and social dynamics (generalizability analysis)?

RQ2:	� Are other research method teams’ reproducible using state-of-the-art causal 
discovery approaches when applied to the same sampled data (reproducibil-
ity analysis)?

RQ3:	� In case it is impossible to uncover the ground truth using sampled data, is it 
because of research method failures or simply the absence of usable ground 
truth signal in the sampled simulation output (robustness analysis)?

Figure 1 presents our causal discovery workflow with the human-in-the-loop 
evaluation (Cottam et  al. 2021), taking specific steps for individual scenarios. 
For example, it shows that for the Urban scenario with the sampled data A we 
performed representation learning, dense block identification, and SOTA data 
imputation steps before applying our causal ensemble approach to the data. Note, 
SOTA imputation algorithms assume a Missing At Random mechanism which 
may bias downstream causal discovery. Thus, approaches like (Strobl 2019; Tu 

Fig. 1   Causal discovery workflow for four simulated virtual worlds (as defined in details in other chap-
ters) when we rely on sampled data collected by two research methods teams (A and B). Alternative (Alt) 
experiments were performed on sampled data after we performed causal discovery on the full dataset to 
measure the effect of additional variables and modeling assumptions on causal discovery performance 
(RQ1)
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et al. 2019; Gain and Shpitser 2018) are designed for causal discovery in the pres-
ence of missing not at random mechanisms.

2.1 � Causal node discovery

As shown in the workflow diagram, causal node discovery steps focused on learning 
variable representations at multiple levels of granularity by performing data fusion, 
construct building (aka feature extraction), aggregation, data imputation, and nor-
malization steps. For that we used a range of data science and statistical approaches 
including but not limited to regression, correlation analysis, statistical tests, social 
network analysis, data visualization, and machine learning.

The most time consuming step during causal node discovery was to understand 
the complexity of each scenario. Processing sampled (aka research request data A 
and B) was scenario-specific. Each scenario required learning customized data rep-
resentations and perform scenario-specific data manipulations as reflected in the 
workflow diagram in Fig. 1.

In all scenarios we worked with missing and extremely sparse sampled data with 
limited temporal overlap across variables, for example data sparsity for samples A 
and B in the Urban scenario was 60% and 77%, and in the Power scenario 79% and 
63%, respectively. Data sparsity and the granularity of variable representations 
could constrain causal discovery results.

However, our additional analysis of causal discovery performance and data spar-
sity demonstrated that the final results are not only constrained by sparsity. We 
observed no correlation between data sparsity and node discovery F1 score, but we 
found that lower density leads to higher edge F1 score. Thus, it is important to note 
that causal discovery performance also depends on scenario complexity, data size, 
and data quality—the presence of the signal in the data and feature representations 
(e.g., constructs), observed versus unobserved variables constructed by subject mat-
ter experts.

2.2 � Causal link discovery

For causal link discovery, we developed an ensemble approach that combines sev-
eral commonly used causal discovery approaches in order to produce one optimal 
causal link prediction model as presented in Fig. 2. The output of our causal ensem-
ble pipeline is a causal model that formally consists of two sets of variables U (exog-
enous variables that are external to the model) and V (endogenous variables that are 
descendants of exogenous variables), and a set of functions f that assign each vari-
able in V a value based on the values of the other variables in the model. To expand 
this definition: a variable X is a direct cause of a variable Y if X appears in the func-
tion that assigns Y value.

As expected, there was no universal causal discovery model that generalized 
across all scenarios, but some algorithms worked consistently (the algorithm fin-
ished running and returned a causal graph)—Greedy Equivalence Search (GES) 
and Max-Min Parents and Children (MMPC)—with full or sampled data A and 
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B as demonstrated in Table  2. We evaluated causal discovery ensemble perfor-
mance using an in-house-developed the human-in-the-loop visual analytics tool 
(Cottam et al. 2021).

We observed that early assumptions (e.g., in the data fusion or representation 
learning steps) hurt the resulting causal discovery performance. Moreover, testing 
algorithm-specific data and modeling assumptions outlined in Table 1 was non-
trivial and, sometimes, impossible.

2.3 � Reproducibility of causal discovery

Figure  3 presents reproducibility analysis of causal discovery results with data 
samples A and B using our causal ensemble approach applied to the same research 
request data (aka data samples A and B). We observe that even when using the 
same sample data as other performers, changes in modeling assumptions and data 
manipulations created big discrepancies across inferred causal graphs. Our causal 
pipeline with the state-of-the-art causal discovery approaches was able to demon-
strate improvement over TA2 results only in the Urban scenario in terms of node 
discovery F1 score, and in the Disaster and Power scenarios in terms of edge dis-
covery F1 score. We can also see that it was more difficult to outperform causal 
discovery approaches applied to sampled data B than sampled data A.

It is important to note that our ability to discover nodes from sampled data was 
limited because our team did not collect sampled data compared to other teams, 
which in turn bounded downstream causal link discovery. Finally, our team made 
different data and modeling assumptions compared to other teams, for example 
our causal structure learning approach did not use any social theory and was data-
driven which could explain our inability to fully reproduce other teams’ causal 
discovery results across all simulated scenarios. Our modeling assumptions about 
how agents make decisions, interact with each other and with the environment, 
and the interaction between the environmental factors drove or constrained the 
final causal discovery performance.

Fig. 2   Our ensemble approach to discover the causal structure of simulated human behavior and social 
dynamics from observational data (RQ1)
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2.4 � Causal discovery with sampled versus full data

Figure  4 presents causal discovery performance using our ensemble approach 
applied across four simulation scenarios with full versus sampled data. As 
expected, node discovery performance for the full data was much higher com-
pared to sampled data (aka research request data sampled by teams A and B). 
Depending on the scenario, node discovery F1 score ranged between 0.13 and 
0.53 for the sampled data and between 0.3 and 0.8 for the full data. Edge discov-
ery F1 was significantly lower. The highest F1 of 0.3 was obtained for the Disas-
ter scenario on both sampled and full data.

Fig. 3   Reproducibility analysis 
presented as differences in 
causal node and link discovery 
performance (measured as 
F1 score) between our causal 
ensemble approach and other 
causal discovery approaches 
using data samples A and B 
(RQ2)

Table 2   An overview of which causal discovery algorithms executed without errors and returned the 
causal graph when they were directly applied to sampled data (A and B collected by other performers) 
and full simulated data across four simulated worlds (RQ3)

Urban Power Disaster Conflict
Algorithm A B Full A B Full A B Full A B Full
PC + – + + – + + + + + + +
MMPC + + + + + + + + + + + +
GS – + + + – – + + – + + +
IAMB – + + + – – – – – – – –
GES + + + + + + + + + + + +
GEIS + – – – + – – – – + + +
LiNGAM – – – – – + – – + – – –
CCDr + + – + – + – + + + + +
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Our full versus sampled data results further demonstrate that causal discovery is 
not about having lots of data like e.g., deep learning, it is about having the signal 
in the data, learning the right representations and encoding the complexity of the 
scenario. As we can see from Fig. 4, Urban scenario has 2TB of data, but causal 
discovery performance is much higher for the Disaster scenario with 300Mb of data.

Knowledge representations are important for both node and edge discovery with 
full or sampled data as shown in Fig. 4. Extracting knowledge from data through 
transformations (e.g., aggregation, construct building, fusion, imputation, and nor-
malization) effects the final node discovery performance, which in turn effects edge 
discovery results. We found that the full data performance exceeds sampled data 
performance only for the Disaster scenario and it is equal for other scenarios. This 
could be explained by strategic and targeted sampling by subject matter experts from 
teams A and B during research request data collection.

Finally, our results demonstrate that SOTA causal discovery approaches are vul-
nerable to data and modeling assumptions. We found that only half of the algorithms 
worked per scenario as shown in Table 2. GES and MMPC were the most gener-
alizable across four simulation scenarios, then Peter-Clark (PC), Concave penal-
ized Coordinate Descent with reparameterization (CCDr), and Grow-Shrink (GS) 
approaches.1

Fig. 4   Causal discovery results 
(measured as F1 score) across 
four simulated worlds using our 
causal ensemble approach on 
sampled (Redo TA2A and Redo 
TA2B) and fully observed data 
(RQ3)

1  References to causal discovery approaches are provided at https://​github.​com/​FenTe​chSol​utions/​Causa​
lDisc​overy​Toolb​ox.

https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
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3 � Robustness evaluation of causal discovery

In this section we perform additional analysis of causal discovery algorithm robust-
ness—specifically robustness to sampling—which is extremely important in the 
real-world setting when it is not possible to observe the full data. We aim to answer 
two research questions below and present an extended analysis in Saldanha et  al. 
(2020).

RQ5:	� How sensitive are the individual causal discovery algorithms and the ensem-
ble approach to sampling in terms of variability of predictions?

RQ6:	� Does robustness depend on properties of the underlying causal graph or the 
observational data?

3.1 � Pcalg causal graphs

For our additional experiments, we generated 1140 random directed acyclic graphs 
(DAGs) with different properties using the randDAG function of the R pcalg library.2 
We used DAGs of size 20, 40, and 60 nodes, with 1 through 5 expected edges per 
node, and 8 different generation methods designed to target different graph topologi-
cal properties. These generation methods were regular—a graph where every node 
has exactly d incident edges, er—an Erdos-Renyi graph where every edge is present 
independently, watts—an interpolation between regular graph and Erdoes-Renyi 
graph, power—a graph with power-law degree distribution, bipartite—a bipar-
tite graph, barabasi —a graph with power-law degree distribution and preferential 
attachment, geometric—a geometric random graph, and interEr—a graph with two 
islands of Erdoes-Renyi graphs connected by a small number of edges. For each 
combination of DAG properties, we randomly generated 10 graphs. We used each 
generated DAG to simulate data that follows the given causal structure using linear 
Gaussian models with the edge weight and noise parameters drawn from uniform 
distributions. Example graphs can be seen in Fig. 5.

3.2 � Bnlearn causal graphs

In addition to pcalg data, we leverage eight public datasets provided by the Bayesian 
Network Repository3 to perform generalization tests of our results on datasets out-
side the Human Domain that have varied complexity, more data types, and different 
relationships between variable. The properties of the data are described in Table 3.

2  https://​www.​rdocu​menta​tion.​org/​packa​ges/​pcalg/​versi​ons/2.​6-8/​topics/​randD​AG.
3  https://​www.​bnlea​rn.​com/​bnrep​osito​ry/.

https://www.rdocumentation.org/packages/pcalg/versions/2.6-8/topics/randDAG
https://www.bnlearn.com/bnrepository/
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3.3 � Robustness analysis

To measure robustness of the causal discovery approach, we repeated the causal 
discovery 10 times and calculated the average proportion of these repetitions 
that each node or edge is present. For example, if A → B appears in 8 out of 10 
graphs, A → C appears in 6 out of 10, and B → D appears in 4 out of 10, the 
directed edge robustness of the graph would be 0.6. We evaluated the robustness 
of both directed edges, counting A → B different than B → A , and undirected 
edges, where we evaluated robustness of the pairs of variables that are causally 

Fig. 6   Robustness of different approaches as a function of the fraction of the data sampled. (Left) The 
directed edge robustness of the individual algorithms and ensembles. (Right) The node, directed edge, 
and undirected edges robustness of the four-algorithm ensemble—GES, PC, GS, IAMB algorithms

Fig. 7   The mean and standard deviation of the directed edge robustness of the four-algorithm ensemble 
with a 32% sample of the data across different graph structure properties including the number of nodes 
(left), the expected number of edges per node (middle), and the graph generation method (right)

Table 3   Properties of the 
bnlearn datasets

Dataset Nodes Edges Data type Data size

Coronary 6 9 Binary 1841
Asia 8 8 Binary 5000
Sachs 11 17 Continuous 853
Child 20 25 Categorical 10,000
Insurance 27 52 Categorical 20,000
Alarm 37 46 Categorical 20,000
Water 32 66 Continuous 10,000
Andes 223 338 Binary 10,000
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related in either direction. We also evaluated node robustness because when cer-
tain edges fail to be discovered it can cause nodes to drop out.

We measure this robustness starting from a very small sample size of 8% of the 
data and double the sample size to 16%, 32%, and 64% to evaluate the sensitivity 
of the algorithm to the sampling proportion. Figure 6 (left) shows the robustness 
of directed edges for each algorithm and ensemble methods without edge weight 
thresholding as a function of the size of the data.

We find that the all-algorithm ensemble approach is less stable than each of 
the individual algorithms at each sample size. Ensembles with the top four per-
forming algorithms have better robustness, but are still hindered by the least sta-
ble algorithms. This indicates that the algorithms are sensitive to data variability 
unless a very large fraction of the data is included.

In Fig.  6 (right) we examine the robustness of all graph components (nodes, 
undirected edges, and directed edges) of the top four ensemble method without 
edge weight thresholding as a function of sample size. As we increase with sam-
ple size, the robustness of ensemble algorithms also increases. With access to the 
full data sample (dashed lines), we find the four-algorithm ensemble to be highly 
stable across multiple runs.

In addition to studying the robustness across the full population of test data-
sets, we also explore whether the robustness varies based on how the graph 
structure was generated. In Fig. 7, we examine the directed edge stability for the 
32% sample in comparison to several graph properties from all 10 runs of the 
pcalg data. For data generated from graphs with many nodes (e.g., 80 nodes), the 
robustness is lower on average than for smaller graphs with fewer nodes (e.g., 20 
nodes). A similar trend exists when we examine the expected number of edges per 
node. We see increasingly more instability as the number of edges per node rises.

Fig. 8   The robustness of predicted edges when applying an edge weight threshold of 0.65 to the ensem-
ble prediction versus without applying a threshold. Each point is an individual graph
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Finally, we compare the directed edge robustness of data generated from each 
pcalg graph generation method. The most stable are regular graphs and the least 
stable are power graphs. These results are presented for the ensemble method with 
edge filtering, which may include some low-confidence edges. To study whether 
filtering to high-confidence edges impacts the robustness of the predictions, we 
compare the robustness with and without edge filtering for a subset of the 40-nodes 
graphs in Fig. 8. We find that filtering the edges increases the robustness of the pre-
dictions by about 6% on average.

3.4 � Robustness and graph properties

We compare the performance of the four-algorithm ensemble across graphs with 
different structural properties. In Fig.  9, we show how robustness varies with the 
density and diameter of the ground truth causal graph. Because the causal graph 
may not be fully connected, we consider the largest diameter among the graph com-
ponents rather than the diameter of the full graph. We find that robustness decreases 
for denser graphs, while increasing for causal graphs with larger diameters.

Fig. 9   Robustness of the four-algorithm ensemble as a function of two graph structure properties—the 
graph density (top) and the graph diameter (bottom). Each pink point is an individual pcalg graph, while 
other colors are the bnlearn graphs. The line of best fit is plotted in black
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When we compare the bnlearn results to the pcalg results in these plots, we see 
that the F1 scores for the bnlearn data are typically somewhat lower than average 
given their graph properties while their robustness values are significantly higher 
than those observed for the pcalg graphs. This indicates that the data generation pro-
cess of the bnlearn data is overall more challenging for the causal discovery algo-
rithms, but that interestingly the predictions of the ensemble are more consistent 
across samples.

4 � Predictive modeling of human behavior and social dynamics

We implemented an agent-based approach outlined in Fig.  10 to answer predict 
questions for four simulated scenarios, for example ”How many people will evacu-
ate at least once during the new hurricane?” Agents are modeled as having an inter-
nal state that consists of relationships, beliefs, and attributes. Agents can observe the 
population (e.g., the current total number of casualties) and the state of nature (e.g., 
current hurricane severity). Agents can remember their past, such as how many 
times an agent experienced a severe hurricane.

We experimented with SOTA machine learning models—Random Forest (RF), 
k-Nearest Neighbors (KNN), Logistic Regression (LR), Deep Neural Network 
(DNN)—to model decisions that agents make during individual time steps. We use 
data-driven models to fit a function from observational data, for example sampled 
data collected by research methods teams, that predicts what action an agent will 
take and how an agent will change as a result of their observation’s current state 
(Zhang et al. 2016). Thus, our mechanistic simulation “stepper” then considers the 
agents collectively to determine outcomes and updates the agent states appropriately.

We apply our causal ensemble approach as described in the previous section to 
determine the causal relationships between agent observations, beliefs, attributes 
and actions. This produces a causal graph we use to perform feature selection in the 

Fig. 10   An overview of our modeling approach to predict human behavior and social dynamics in simu-
lated virtual words Shmueli 2010
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predictive model. When there is a chain between inputs and actions, all ancestors in 
that chain are included as features to train the machine learning model. The advan-
tage is that this reduces the dimensionality of the problem and removes inputs that 
are spuriously correlated with the agent’s decision. As a baseline, we simply do not 
perform feature selection and train ML model using all features.

Different scenarios produced vastly different training data for the agent decision 
models, with the smallest training data coming from the Disaster scenario and the 
largest coming from the Conflict scenario. Though we attempted to use a standard 
set of machine learning models, not all models were practical or effective across 
all scenarios. We found that LR was typically not fast enough to apply to most sce-
narios. In some scenarios RF was also too time consuming to apply. Most models 
we trained had similar single-step accuracy, they could predict what an agent will 
do next. Interestingly KNN models tended to exhibit better end-to-end accuracy on 
our held-out validation set. Generally, causal discovery did not produce better end-
to-end results on the held-out validation set. Across all four scenarios, the benefit 
of causal feature selection was only shown for the Disaster and Power scenarios. 
Using TA2A versus TA2B sampled (research request) data led to equal predictive 
performance. For the Power scenario DNN demonstrated the highest performance 
followed by KNN and RF models; however, for the Disaster scenario KNN outper-
formed DNN and RF models. The performance was comparable when we experi-
mented with different modeling decision for the Disaster scenario, for example 
model at the agent versus population-level, deterministic versus stochastic modeling, 
agent making multiple or one-choice decisions, etc.

To summarize our findings, our predict performance was influenced by how 
compatible our ML-based simulation architecture matched the original simulation 
approach. It is important to note that predict questions were of different complexity 
(Mitchell and Newman 2002; Ladyman et  al. 2013) across and within simulation 
scenarios, which explains varied performance and the fact that no universal predic-
tive model could be applied across four simulation scenarios. Predict answers with 
sampled data A versus B were comparable. Running predict analysis on full data 
would have helped our understanding of the effect of sampling on predict perfor-
mance. Thus, additional experiments needed to fully explain our predict results and 
determine whether there were incorrect modeling assumptions made, the causal 
graphs were too noisy, the causal knowledge was not incorporated properly, there 
was not sufficient data for models to generalize on, or the predict questions were 
beyond a forecasting horizon (Martin et al. 2016; Abeliuk et al. 2020; Salganik et al. 
2020).

4.1 � Incorporating causal knowledge into predictive models

In addition to evaluating predictive models with and without causal knowledge sys-
tematically embedded on sampled data A and B across four simulation scenarios, we 
performed an extensive evaluation on internally simulated data with known ground 
truth (instead of inferred ground truth). We experimented with continuous binary 
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and mixed data types on non-intervened datasets and demonstrated that embedding 
causal knowledge improved predictive performance in several experimental settings. 
Binary output variables (both causal parents and ancestors of mixed and binary 
inputs) and continuous output variables (causal parents of mixed and continu-
ous inputs) demonstrated the benefit of relying on causal knowledge for predictive 
modeling.

The data for our predict experiments were simulated using the R pcalg library as 
described in Sect. 3. We generated 1140 random DAGs of various sizes to represent 
varied causal structures and presented the example graphs in Fig. 5. For every simu-
lated graph, we predicted the value of each node under three experimental setting as 
illustrated in Fig. 11. In the first setting, input information from all nodes is avail-
able (excluding the node we are predicting). In the second setting, information from 
the nodes in the causal ancestry of the predicted node is available. Finally, in the 
third setting, only nodes that are direct parents of the predicted node are available as 
inputs to the model.

With the generated datasets, we trained a DNN and two baseline ML models, RF 
and LR for prediction, classification (for binary outputs), and regression (for con-
tinuous outputs). Distinct models were trained for each graph with 70% of the sam-
ples used for training, 10% for validation, and 20% held out for testing. Our DNN for 
both regression and classification consists of three layers with 64 units and a dropout 
rate of 0.25. We used the Adam optimizer with a learning rate of 0.005 and early 
stopping. Mixed datasets made use of all models depending on the data type of the 
output node. A mix of binary and continuous data was given as input.

Training three types of models for each node as the output in every graph under 
all three experimental settings is computationally expensive. Therefore, we ran-
domly select 255 unique graphs that covered each generation method at each graph 
size. In total, 6,468 models were trained and evaluated.

We investigated the relationship between the predictive power of each model and 
the inclusion of the causal knowledge. For that we measured the differences in the 
mean performance scores between the non-causal and the causally informed mod-
els, and evaluated the statistical significance of the comparisons using 1-tailed t-test. 
Table 4 shows the p-values and significance for the pairwise t-tests.

(a) All Inputs (b) Ancestors Causal (c) Direct Causal

Fig. 11   Each graph illustrates an example of the input nodes and output node defined by the experimen-
tal setting under which we trained ML models (Tsamardinos et al. 2003; Aliferis et al. 2010). Green sig-
nifies an input node; striped orange indicates the output node. In setting 1, all nodes excluding the output 
node are inputs to the model. In setting 2, all nodes in the ancestry of the output node are model inputs. 
In setting 3, only direct parents of the output node are model inputs
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In datasets with a mix of continuous and binary data types, a non-causal 
model (all available variables as input) outperformed any causal model in most 
instances. For strictly binary datasets, a model leveraging causal feature selec-
tion had shown to always improve F1 scores. In particular, a model trained with 
only direct causal parents of the prediction node yielded the best performance 
(similar to Aliferis et  al. 2010). In a continuous setting, our results were more 
varied. The root-mean-square deviation (RMSE) values from a causal DNN 
model are statistically lower than the non-causal DNN; however, this result was 
reversed when using a linear model. The RF model showed little differences in 
the RMSE values.

It is important to note that unlike predict experiments with four simulated 
worlds, our additional experiments and analyses rely on having the true causal 
graph for a dataset. In practice, access to the ground truth graph is exceedingly 
rare. Most likely, researchers will have a learned causal graph produced from 
one of the many causal discovery algorithms or other methods. Errors in the 
inferred causal relationships are likely to lead to reduced performance of causal 
feature selection methods. In future work, we will perform similar predict exper-
iments with (a) interventional simulated data and (b) learned causal graphs in 
order to quantify the impact of such errors in the causal structure. In combina-
tion with our current results, such analysis will provide practical evidence to 
researchers about the importance of causal feature selection and the potential 
need for improved methods of determining the underlying causal structure as 
discussed in earlier e (Aliferis et al. 2010).

Table 4   Predictive model performance on non-interventional simulated data

Significance is denoted with * for p < 0.05 , ** for p < 0.01 , and *** for p < 0.001

Input type Output type Model All nodes avg F1 Indirect avg F1 Direct avg F1

Mixed Binary DNN 0.874** 0.845 0.852**
Random Forest 0.855*** 0.816 0.821
Logistic Reg. 0.865*** 0.845 0.849*

Binary Binary DNN 0.702 0.750*** 0.763**
Random Forest 0.706 0.751*** 0.762***
Logistic Reg. 0.731 0.744*** 0.748**

Input type Output type Model All nodes avg 
RMSE

Indirect avg RMSE Direct avg RMSE

Mixed Continuous DNN 1.574 1.420** 1.278**
Random Forest 1.091** 1.421 1.270***
Linear Reg. 1.607*** 1.938 1.800

Continuous Continuous DNN 0.177 0.145*** 0.141**
Random Forest 0.148* 0.151 0.149**
Linear Reg. 0.079*** 0.092 0.092
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5 � Conclusions and future work

In this work we evaluated multiple approaches to discover the causal mecha-
nisms of human behavior and social dynamics from observational data using four 
simulated worlds. In addition, we performed an additional evaluation on simu-
lated datasets frequently used for benchmarking outside the human domain. We 
validated generalizability, reproducibility and robustness of these approaches for 
causal discovery (aka causal structure learning) and outlined their strength, weak-
nesses and limitations. We demonstrated that the existing methods are not gen-
eralizable across use cases and datasets, and are not robust to sampling. Specifi-
cally, we showed that causal ensembles with the top four performing algorithms 
are more robust to sampling, but are still hindered by the least stable algorithms. 
As expected, as we increase the sample size, the stability of ensemble algorithms 
also increases. Both explain and predict methods are vulnerable to data and mod-
eling assumptions e.g., how agents make decisions, interact with each other and 
with the environment, and how interactions occur across the environmental fac-
tors. We also measured how causal discovery performance depends on the task 
complexity, data size, and the signal in the data. We demonstrated the importance 
of data to knowledge representation learning for causal discovery (Schölkopf 
et al. 2021) by empirically evaluating how knowledge extraction from data effects 
model performance.

When explicitly incorporating inferred causal knowledge into predictive mod-
els, we demonstrated the benefit of causal feature selection for two out of four 
simulation scenarios. However, it is important to note that the causal knowledge 
were inferred with high uncertainty. Therefore, it is necessary but not sufficient 
to improve causal discovery methods in order to boost predictive modeling of 
complex systems including but not limited to human behavior. The causes of 
uncertainty were compatibility of our simulation approach with virtual worlds’ 
simulation approaches, not having sufficient data for models to learn from, or task 
complexity and the forecasting horizon. Our additional predict experiments where 
we incorporated known ground truth into machine learning models (rather than 
the inferred ground truth) showed the benefit of including causal knowledge for 
predictive modeling for multiple output variable type -- binary and continuous.

Our causal discovery and modeling results to explain and predict human 
behavior and social dynamics raise a number of interesting questions and direc-
tions for future work. However, as of now, traditional causal discovery approaches 
are limited and are insufficient to explain and anticipate human social dynamics. 
First, accounting for individual differences can significantly increase dimension-
ality of the data and confound estimates of causal effects when the structure of 
the causal model is not known a priori. Second, relatively little research exists on 
designing personalized interventions. Finally, little is known about how to enable 
contextualized reasoning, when changes in the individual and the environment 
inform interventions.

Mining real-world human behavioral data to discover natural experiments 
(King et  al. 2011; Alipourfard et  al. 2018) could be an alternative to inferring 
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the causal mechanisms from human behavioral data to study complex social 
phenomena in the Human Domain like social inequality, perception and suscep-
tibility to disinformation or the spread infectious diseases e.g.,  Haushofer and 
Metcalf, 2020. But it presents major computational challenges for causal dis-
covery and inference, and other multidisciplinary computational social science 
approaches. The major challenge is explicitly measuring the effects, which is dif-
ficult as treatment may itself be correlated with some aspects of human behav-
ioral data, confounding analysis. Additional challenges include continuous treat-
ments, fair causal inference, high-dimensional feature spaces (Feder et al. 2021) 
etc. Addressing national security challenges relevant to the Human Domain by 
discovering natural experiments or by using other computational methods, to 
save lives or to strengthen the democracy, will require extensive validation of the 
existing computational methods, as well as rethinking ethical usage of sharing 
data and strong multidisciplinary collaborations (Lazer et al. 2020; Watts 2011; 
Kahneman 2011).
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