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Abstract—Hypergraphs are a popular paradigm to rep-
resent complex real-world networks exhibiting multi-way
relationships of varying sizes. Mining centrality in hyper-
graphs via symmetric adjacency tensors has only recently
become computationally feasible for large and complex
datasets. To enable scalable computation of these and
related hypergraph analytics, here we focus on the Sparse
Symmetric Tensor Times Same Vector (S3TTVC) oper-
ation. We introduce the Compound Compressed Sparse
Symmetric (CCSS) format, an extension of the compact
CSS format for hypergraphs of varying hyperedge sizes and
present a shared-memory parallel algorithm to compute
S3TTVC. We experimentally show S3TTVC computation
using the CCSS format achieves better performance than
the naive baseline, and is subsequently more performant
for hypergraph H-eigenvector centrality.

Index Terms—hypergraphs, sparse symmetric tensor
times same vector, tensor eigenvector, generating function

I. INTRODUCTION

Hypergraphs are generalizations of graphs that repre-

sent multi-entity relationships in a broad range of do-

mains, such as cybersecurity [1], [2], biological systems

[3], social networks [4], and telecommunications [5].

While graph edges connect exactly two nodes, hyper-

edges may connect any number of nodes. Most real-
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world hypergraphs are non-uniform, meaning they have

differently sized hyperedges, which poses challenges for

their compact representation and analysis.

For uniform hypergraphs, symmetric tensors are popu-

larly used to represent the higher-order adjacency infor-

mation [6], [7]. Several strategies have been explored

to extend the tensor representation approach to non-

uniform hypergraphs, including adding dummy nodes

[8], [9], considering the set of symmetric adjacency

tensors, with each tensor arising from the component

uniform hypergraph of a particular hyperedge size [10],

[11], and combinatorially inflating the lower–cardinality

hyperedges until all hyperedges are equisized [12]. Fol-

lowing Aksoy, Amburg, and Young [13], we call these

inflated hyperedges blowups and focus on the adjacency

tensor as defined by Banerjee et al. [12], which we call

the blowup tensor.

S3TTVC is a key operation on symmetric tensors,

and is the computational bottleneck in fundamental al-

gorithms such as the shifted-power method for comput-

ing tensor eigenpairs and symmetric CP-decomposition

[14]–[16]. These algorithms, in turn, are utilized to

perform a variety of hypergraph analyses. For instance,

eigenpairs of the adjacency tensor of uniform hyper-

graphs are used to define H-eigenvector centrality (HEC)

[17], a nonlinear hypergraph centrality measure which

was further extended to non-uniform hypergraphs using

the blowup tensor representation [13]. Thus, developing

performant algorithms for S3TTVC on the blowup tensor

324

2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/23/$31.00 ©2023 IEEE
DOI 10.1109/HiPC58850.2023.00049

20
23

 IE
EE

 3
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 H
ig

h 
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

79
-8

-3
50

3-
83

22
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

HI
PC

58
85

0.
20

23
.0

00
49

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 04,2024 at 17:45:02 UTC from IEEE Xplore.  Restrictions apply. 



enables efficient computation of hypergraph centrality.

However, working with the blowup tensor requires

we overcome several computational challenges. First,

since enumerating all its nonzeros is prohibitively costly,

following Aksoy, Amburg, and Young, we will adapt

the “generating function approach” [13], to perform the

computation indirectly. Second, we introduce a new,

compressed format for tensors that is tailored to re-

duce the memory footprint of storing nonuniform hyper-

graphs, called Compound Compressed Sparse Symmet-

ric (CCSS). This extends past work on the CSS format

for uniform hypergraphs [18], [19] and, as explained

further in Section IV, achieves S3TTVC performance

gains via memoization of intermediate results.

Our main contributions are summarized as follows:

• We introduce the Compound Compressed Sparse

Symmetric (CCSS), an extension of the CSS for-

mat for non-uniform hypergraphs, and demonstrate

up to 26.4× compression compared to coordinate

storage format for real-world hypergraphs.

• We implement an efficient multi-core parallel

S3TTVC algorithm, called CCSS-MEMO which

adapts the generating function approach to the

CCSS format, and identifies opportunities for mem-

oization of intermediate results.

• We present two baseline approaches which use the

CCSS without memoization and adopt two state-of-

the-art approaches to highlight the performance of

CCSS-MEMO. We realize up to 53.98× speedup

compared to CCSS-DIRECT, and up to 12.45×
speedup compared to CCSS-FFT.

• We apply our algorithm to the calculation of H-

eigenvector centrality for hypergraphs, obtaining

speedups of many orders of magnitude over state-

of-the-art approaches.

II. PRELIMINARIES

Following Kolda and Bader [20], we denote vectors

using bold lowercase letter (e.g., a, b), and tensors using

bold calligraphic letters (e.g., X). For a tensor X and a

vector b we will also denote by X×j b the product of

X and b along the j th-mode of X resulting in a order

(N−1) tensor. Using this notation, we can define Tensor-

Time-Same-Vector in all modes but 1 (TTSV1)

s = XbN−1 = X = X×2 b×3 b . . .×N b (1)

which plays an important role in calculating generalized

eigenvalues and eigenvectors associated with X. Alterna-

tively, by expanding along indicies this may be rewritten

as

si1 =
[
XbN−1

]
i1

=
n∑

i2=1

· · ·
n∑

iN=1

Xi1,...,iN

N∏
k=2

bik .

(2)

Formally, a hypergraph is a pair H = (V,E), where

V is the set of vertices, and H is the set of hyperedges

on those vertices; that is, E is some subset of the power

set of V . We say H is uniform if all hyperedges have

the same size; otherwise, it is nonuniform. The rank of

H is the size of the largest hyperedge.

An order-N symmetric tensor X has N modes or

dimensions, with the special property that the values,

X(i1,i2,...iN ) remains unchanged under any permutation

of its indices. Symmetric tensors arise naturally in many

context including the representation of hypergraphs. For

example, if H is an N -uniform hypergraph on n vertices,

there is natural symmetric representation as an order-N
tensor X ∈ R

n×n×···×n. That is, for every hyperedge

e = {vi1 , vi2 , . . . , viN } ∈ E with weight w(e), Xσ(i) =
w(e)
N ! , where σ(i) denotes any of the N ! permutations of

the index tuple i = (i1, . . . , iN ). In order to extend this

representation to non-uniform hypergraphs, we follow

the approach of Banerjee et al. [12] and define for a

rank-N edge-weighted hypergraph H = (V,E,w) the

order-N blowup tensor, B, associated with H . To this

end, for each edge e ∈ H define the set of ordered

blowups of e as

β(e) = {i1, i2, . . . iN : for each v ∈ e, ∃j � ij = v}.1

Then for each i ∈ β(e), Bi has value
w(e)
|β(e)| . As we

be working primarily with the blowup tensor, it will be

convenient to define E(B) as the collection of edges

which generated the blowup tensor B. In this paper, we

take w(e) = |e| to ensure that B1N−1 = d, the vector

of node degrees. It is worth noting that for uniform

hypergraphs, B is precisely the uniform adjacency tensor

of the hypergraph discussed above.

The H-eigenvector centrality vector of H is a positive

vector x satisfying BxN−1 = λx[N−1], where λ is

the largest H-eigenvalue of B and the vector operation

x[N−1] represents componentwise N−1 power of x. By

the Perron-Frobenius theorem for the hypergraph adja-

cency tensor [13], if H is connected, then x is guaranteed

to exist, and is unique up to scaling. Intuitively, here a

1Note that |β(e)| depends only on N and the size of e and is given

by |e|!{N
|e|

}
, where

{N
|e|

}
, is the Stirling number of the second kind.

Thus β(e) can be trivially precomputed and stored in a lookup table
to accelerate future computations.
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node’s importance (to the power of N − 1, which guar-

antees dimensionality preservation) is proportional to a

product of centralities over all blowups of hyperedges

that contain it. A popular approach is to compute the

eigenpair (λ,x) using the NQZ algorithm [21] (Algo-

rithm 1, where � denotes componentwise division), an

iterative power-like method that utilizes TTSV1 as its

workhorse subroutine, which we employ here.

Algorithm 1 NQZ algorithm for computing HEC

1: Input: n-vertex, rank N hypergraph H , tolerance τ
2: Output: H-eigenvector centrality, x
3: y = 1

n
· 1

4: z = TTSV1(H,y)
5: repeat

6: x = z

[
1

N−1

]
/||z

[
1

N−1

]
||1

7: z = TTSV1(H,x)
8: λmin = min (z� x[N−1])
9: λmax = max (z� x[N−1])

10: until (λmax − λmin)/λmin < τ
11: return x

Motivated by questions in hypergraph node ranking,

we investigate the TTSV1 operation for the blowup

tensor of a non-uniform hypergraph. To distinguish from

the more general case, and emphasize the applicability to

sparse symmetric tensors, we will refer to this problem

as he Sparse Symmetric Tensor Times Same Vector

(S3TTVC) operation on the blowup tensor. In many

ways, the current work can be thought of as synthesis

of the implicit S3TTVC algorithm on the blowup tensor

proposed by Aksoy, Amburg and Young [13], with

the CSS format for storing sparse symmetric adjacency

tensors of uniform hypergraphs [18].

To that end, we summarize some of the key features

of these two approaches in the next two subsections.

A. Generating Functions for S3TTVC

Aksoy, Amburg and Young proposed the implicit AAY

algorithm [13] (Algorithm 2) to evaluate TTSV1 for the

blowup tensor that relies on generating functions. The

fundamental observation which drives their algorithm is

that, in the blowup tensor, all entries corresponding to

a single edge have the same coefficient. Thus, by using

generating functions to aggregate over the contributions

of all elements of β(e), the computational requirements

can be significantly reduced. More concretely, they ob-

served that for any edge e ∈ E and vertex v ∈ e, the

contribution of e to [BbN−1]v can be captured as a

rescaling of the last entry in

EN (bv) ∗
(
∗

u∈e\v
Er(bu)

)
,

where

EN (c) =

[
1, c,

c2

2!
, . . . ,

cN−1

(N − 1)!

]
and

EN (c) =

[
0, c,

c2

2!
, . . . ,

cN−1

(N − 1)!

]

and (a ∗ b) is a vector of length N + 1 representing the

convolution operation with (a ∗ b)[k] =
∑k

i=0 aibk−i.

Alternatively, their approach can be viewed as extracting

a specific coefficient of tN−1 from a particular expo-

nential generating function [22]. This approach yields

Algorithm 2.

Algorithm 2 AAY algorithm for implicit TTSV1 using

Banerjee adjacency tensor.

1: Input: rank N weighted hypergraph (V,E,w), vector b
2: Output: S3TTVC output, s = BbN−1

3: for v ∈ V do
4: c ← 0
5: for e ∈ E(v) do

6: c +=
w(e)

|β(e)| (N − 1)!EN (bv) ∗
( ∗
u∈e\v

EN (bu))[N − 1]

7: end for
8: sv ← c
9: end for

10: return s

While the aggregation over vertex-edge pairs given by

the AAY approach results in significant computational

speedups, the lack of structure imposed on the compu-

tation results in frequent repetition of the convolution

calculations. For example, in the AAY approach the

convolution E(bv)∗E(bu) is computed |e|−2 times for

every edge containing both v and u.

B. Compressed Sparse Symmetric Format

The CSS structure [18], [19] is a compact storage

format that enables efficient S3TTMC computation for

sparse symmetric adjacency tensors X arising from

uniform hypergraphs. In order to take advantage of the

symmetry of X, CSS stores all information based on the

collection of sorted edges of the associated hypergraph,

E(X)2

If X has order N , then the CSS is a forest with

N − 1 levels where every length k subsequence of

an element of E(X) corresponds to a unique root to

level k path in the CSS. Further, the leaves at level

N − 1 are equipped with the ”dropped” index in the

2Vertex-sorted hyperedges are also referred to as index-ordered
unique (IOU) non-zeros [18], [19], and denoted by unz(X), where
a non-zero entry of a order N tensor Xi1,...,iN is IOU if i1 < i2 <
· · · < iN .
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subsequence and the value of X for the corresponding

element of E(X). A key advantage of using the CSS

format is its computation-aware nature — by storing all

ordered subsequences of E(X), intermediate results in

the S3TTMC computation can be easily memoized with

minimal additional index information. In Shivakumar et

al. [18], [19] the S3TTMC-CSS algorithm is used to

find the tensor decomposition of an adjacency tensor of

a uniform hypergraph. The convergence of this method

requires that the original hypergraph be connected. For a

non-uniform hypergraph, it is likely that there exists an

edge size such that the collection of hyperedges of that

size is not connected. Thus, it is theoretically necessary

to work with a single tensor representation of the hyper-

graph, such as the blowup tensor, in order to preserve

the necessary convergence properties. This presents two

primary challenges in applying S3TTMC-CSS that the

current work addresses: the blowup tensor can have

super-exponentially many non-zeros corresponding to

a single edge and any data structure must explicitly

account for the repetitions of the vertices induced by the

blow-up. Naively, extending the index-ordered non-zeros

approach of S3TTMC-CSS to incorporate repeated ver-

tices will result in a significant increase in the memory

footprint of the CSS structure to account for the repeated

vertices, as well as the computational cost of computing

S3TTVC itself. On the other hand, adopting the implicit

construction approach and storing the adjacency tensor

of each constituent uniform hypergraph using the CSS

format is a suboptimal approach in terms of memory

requirement compared to CCSS (described in the next

section) and results in greater computation cost as we

lose out on memoizing intermediate ĒN across IOU non-

zeros i.e. hyperedges. Moreover, directly applying the

S3TTMC-CSS algorithm to such a storage construction

will not lead to correct results for the tensor-times-same-

vector operation.

III. COMPOUND CSS STRUCTURE

In this paper, we present an extension of CSS, called

Compound Compressed Sparse Symmetric (CCSS)

which facilitates fast S3TTVC computation on the

blowup tensor representing non-uniform hypergraphs.

One natural way to extend CSS to non-uniform hyper-

graphs would be to build an instance of CSS for each

constituent uniform hypergraph and work independently

on the corresponding adjacency tensors. However, as

the associated tenors would all be of different orders,

additional work would be needed to lift the methods

of Shivakumar et al. [18] to the non-uniform case.

i1 2 1 1 4 1 5

i2 3 3 2 5 4 7

i3 4 4 3 6 6

i4 7 6 8 7

vals v1 v2 v3 v4 v5 v6

Fig. 1. Non-uniform hypergraph generating three sparse symmetric
tensors having 6 IOU nonzeros in total.

Furthermore, similar to the AAY approach, decompos-

ing the non-uniform hypergraph into multiple uniform

hypergraphs leads to significant extra computation and

storage. For instance, if u and v are in multiple edges of

different sizes then memoized work for the subsequence

u, v occurs in the CSS for each of these edge sizes.

Instead, we introduce CCSS which extends the CSS to

non-uniform hypergraphs by building a forest of N − 1
levels containing all proper subsequences E(B), that is,

the ordered proper subsets of the edges. In particular, if

f is a size � proper subset of an edge e, f is represented

by a unique root to level � path in the forest, and

further, this path is given by an in-order listing of the

elements of f . In contrast to CSS, in CCSS the edges

of B are “owned” by vertices in the forest at all levels

and a vertex at a given level may own multiple edges.

We note that the edges owned by a given vertex can

be thought of as special leaves of the data structure

(at level corresponding the the edge size) which store

the “dropped” vertex and the value of the tensor at

all blowups of the edge. These special leaves of the

CCSS can be easily enumerated as the ordered pairs

L = {(e, v) : e ∈ E, v ∈ e}. We will denote by Lk ⊆ L
those special leaves corresponding to an edge of size

k. We will also denote by S(v) the set of special leaves

“owned” by a vertex in the CCSS structure and note that

L� = ∪S(v) where the union is taken over all vertices

at level �− 1 in the CCSS structure.

In the example shown in Fig. 2, the CCSS is con-

structed from a 8-node weighted non-uniform hyper-

graph with edges (shown in index-ordered format) in

Fig. 1. We can easily see the reduction in space (as

compared to the multiple CSS approach) in this example

– the sequence (1, 4) is shared between the sequences

(1, 4) and (1, 4, 6), corresponding to the edges {1, 4, 6}
and {1, 3, 4, 6}, respectively.

A. Space complexity

The total number of nodes in the CCSS depends not

only on the number of edges in E(B), but also the
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Fig. 2. CCSS for rank-4 non-uniform hypergraph in Fig. 1. The special leaves are represented by rectangular nodes with the dropped vertex
over the value of the corresponding entry in B. Note that these special leaves are depicted on different layers of the forest corresponding to the
edge size, for instance, the edge {1, 4, 6} corresponds to 3 special leaves all at level 3 (those with value v5, while the edge {5,7} correspond
to 2 special leaves all at level 3 (those with value v6).

relative sizes and intersection structure. Thus, although

a single edge e requires at
(|e|

�

)
vertices at level � in

the forest and 2|e| − 1 vertices in the forest overall,

because of the intersections across edges the size of

CCSS is typically much smaller than the worst case∑
e∈E 2|e| − 1.

In the next section, we outline how CCSS can be used

to compute S3TTVC on the blowup tensor.

IV. S3TTVC COMPUTATION

This work adopts the generating function approach

outlined in the AAY algorithm [13] for computing

S3TTVC in parallel using the CCSS data structure. We

present two algorithms – a baseline approach given

in Algorithm 3 which directly parallelizes the AAY

approach given in Algorithm 2 and uses the CCSS

to store the hypergraph and an optimized version in

Algorithm 4 which rearranges the computations of the

AAY approach in order to leverage the CCSS to reduce

the overall computation by memoization of intermediate

results.

For both of these approaches the focus is on calcu-

lating, for every pair e ∈ E and v ∈ e, the last entry

of the convolution in the convolution of lists EN (v)
and {EN (bu)}u∈e\v . For the baseline algorithms, we

consider two different methods of computing this con-

volution; an in-place shift-and-multiply approach and a

more efficient approach (but with a larger memory foot-

print) based on the Fast Fourier Transform (FFT) [23].

In Algorithm 4, we only consider a variant of the shift-

and-multiply convolution because of the memoization

approach used.

Algorithm 3 S3TTVC using CCSS via generating func-

tion.
Input: Non-uniform hypergraph stored in CCSS, b
Output: S3TTVC output, s = BbN−1

1: for � = N, . . . , 1 do
2: parfor (e, v) ∈ L� do //CCSS
3: coefs = EN (bv)
4: u = v
5: for �′ = �− 1, . . . , 1 do
6: u = parent(u) //CCSS
7: coefs = EN (bu) ∗ coefs
8: end for
9: AtomicAdd

(
sv,

(N−1)!�
|β(e)| coefs[N − 1]

)

10: end parfor
11: end for

A. Baseline algorithm

Note that Algorithm 3 iterates over the “special”

leaves in the CCSS structure by level and for each of

these leaves moves up through the CCSS forest to a

root of one of the subtrees. This leaf-to-root traversal

would make any memoization approach inefficient and

challenging to implement as the repeated calculations

occur at different locations in the CCSS. For example,

in Fig. 2 there are several repeated paths (for example,

4, 6 with a special leaf for vertex 1 appears in the trees

rooted at 3 and at 4, or 7 with a special leaf for vertex

5 appears in trees rooted at 4 and at 7), however as

these calculations occur at different nodes and different

levels in the CCSS forest it is challenging to realize

the benefits of memoization. This observation inspires

our development of a root-to-leaf traversal of the CCSS

structure, detailed in the next subsection.
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Algorithm 4 Memoized S3TTVC using CCSS and gen-

erating function.

Input: Non-uniform hypergraph stored in CCSS, b
Output: S3TTVC output, s = BbN−1

1: For each processor allocate sub-coefficient memo-

ization workspace W of size R
(N−1)×(N−1).

2: parfor v = 1, 2, . . . n do
3: for j = 1, 2, . . . N − 1 do
4: for i = 1, 2, . . . , j do
5: Wij ← 1

(j−i+1)!b
j−i+1
v

6: end for
7: end for
8: DFS(v, W, 1)

9: end parfor

10: function DFS(v, W, �)
11: for u ∈ S(v) do

12: coefs =

[
1,bu,

b2

u

2! , . . . ,
bN−1−�

u

(N−1−�)!

]
13: AtomicAdd

(
su,

(N−1)!�
β(�) coefsTWN−1−�

)
14: end for
15: for u ∈ children of v do
16: for p = 1, 2, . . . N − 2 do
17: for q = 1, 2, . . . , p do
18: Zpq ←

∑q−p
c=0

1
c!b

c+1
u Wp,q−c

19: end for
20: end for
21: DFS(u, Z, �+ 1)

22: end for
23: end function

B. Optimization: Convolution Memoization

In this approach, we optimize the traversal of the

CCSS forest by using a depth-first search to traverse

each tree independently with a separate memoization

space, W . After the algorithm has processed a node v
on level � which has path to the root v1, v2, . . . , v� = v,

the kth column of W , denoted Wk, stores the portion of

the convolution of {EN (bvi)}ki=1 with degree at most

�+k−1. Furthermore, if S(v) is non-empty for a vertex

v at level �, for any u ∈ S(v) the contribution of to

su can be found by taking the dot product of column

WN−1−� with the terms from EN (bu) of degree at most

N −1− �. The pseudocode for this approach is given in

Algorithm 4.

To illustrate the memoization approach, consider the

traversal of the subtree rooted at 1 in Figure 2. This tree

will have 3 workspaces associated with it W1, W2, W3

associated with each level of the tree. Workspace 1 will

always contain the information necessary to construct

the generating function ĒN (1), while W2 and W3 will

contain the information necessary to construct the gener-

ating function for the convolutions of ĒN for v1, v2 and

v1, v2, v3, where v1, v2, v3 is the path to the current node

in the depth-first traversal of the tree. After the unique

child of the path (1,2,8) has been computed, the next

node in the depth-first traversal is vertex 3 as a child of

the root (vertex 1). The updated W2 can be computed

directly from the information in W1 while updated W3

is delayed. Now, when traversing the children of vertex 2

(namely 4, 6, and 8) the appropriate W3 can be computed

directly from W2 without recomputing the convolutions

ĒN (1) ∗ ĒN (2). This convolution has been effectively

memoized for future computations in W2.

We note that for readability of Algorithm 4 we have

suppressed the use of several easy optimizations. For

instance, if all the edges associated with special leaves

in a tree have size at least k, then the number of

rows W can be reduced to N − k + 1 as the higher

order terms in EN are irrelevant to the final output.

Similarly, if the maximum size of an edge associated

with a tree is m, then the number of columns of W can

be reduced to m − 1 as the longest path to be tracked

has size m. The memoization workspace is allocated per

processor, which stores the W matrix of convolution

operations. Moreover, note that W is a square upper-

triangular Toeplitz matrix, which brings down memory

costs to O(N)2, since each vertex needs to update only

a vector of length N . Finally, the CCSS forest can be

trimmed to eliminate trees, or subtrees, which have no

special vertices attached.

C. Computational complexity

We compare the computational complexity of Algo-

rithm 3 and Algorithm 4. For Algorithm 3, every special

leaf corresponding to (e, v) requires one traversal from

the special leaf to the root, and thus total number of

convolutions computed is
∑

e∈E |e|2−|e|. However, in

Algorithm 4 every edge of the CCSS forest corresponds

to a convolution which is computed exactly once. In

particular, the number of convolutions is one less than the

number of nodes in the CCSS forest. While the precise

speedup resulting from avoiding the extra convolutions

is heavily dependent on the structure of the hypergraph,

as we will show in Sec. V, in most real-world cases this

results in an order of magnitude saving in runtime.

In spite of the difficulty in determining the exact

number of convolutions saved by using the CCSS struc-

ture, we can still identify key substructures that lead to

significant performance benefits; namely nested families
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Fig. 3. Hypergraph sub-structures in which the memoization of
Algorithm 4 significantly improves the performance over that of
Algorithm 3. On the left is the sunflower hypergraph where many
edges share a common intersection, and on the right is the nested
hypergraph where edges satisfy a containment relationship.

of edges and “sunflowers” (collections of edges with

a shared intersection), see Fig. 3. For example, with a

nested series of edges e1 ⊂ e2 ⊂ · · · ⊂ ek, Algorithm 3

will require the computation of
∑k

i=1|ei|2−|ei| convo-

lutions without memoization. In contrast, the optimal

CCSS tree will yield require only
|ek|2−|ek|−2

2 +
∑k

i=1|ei|
convolutions. Similarly, if we consider a sunflower con-

sisting of m edges of size k with a common intersection

of size t, we can see that the non-memoized computation

will require m(k2−k) convolution calculations while the

memoized version requires

(k − t− 1)2 + (k − t− 1)

2
+ (t− 2)t+ (k− t)m+ km

convolutions. In fact, even for a single edge of size

k, the non-memoized computation requires at k2 − k
convolutions while the memoized version will require
k2−k

2 . Thus the memoization decreases by a factor of

at least 2 times the number of convolution operations

necessary to evaluate S3TTVC.

V. EXPERIMENTS

We compare the runtime performance and thread scal-

ability of our shared-memory parallel S3TTVC algorithm

CCSS-MEMO against our two baseline approaches —

CCSS-DIRECT and CCSS-FFT — for a collection of

real-world and synthetic datasets.

A. Platform and experimental configurations

Our experiments were conducted on a shared-memory

machine with two 64-core AMD Epyc 7713 CPUs at 2.0

GHz and 512GB DDR4 DRAM. This work is imple-

mented using C++ and multi-threading parallelized using

OpenMP; all numerical operations are performed using

double-precision floating point arithmetic and 64-bit

unsigned integers. It is compiled using GCC 10.3.0 and

Netlib LAPACK 3.8.0 [24] for linear algebra routines.

The polynomial multiplication optimization is performed

via full one-dimensional discrete convolution using Fast

Fourier Transform (FFT) implementation from FFTW

library [25].

B. Datasets

We tested with eight real-world datasets and four

synthetic datasets for more analysis, shown in Table I.

Real-world data. The real-world data come from di-

verse applications with different amount of nodes |V |
(ranging from 103 to 106), hyperedges |E| (ranging

from 104 to 106), and component adjacency tensors Nk

(ranging from 22–100). A brief introductory description

and reference of the real-world datasets are given in

the last two columns. Note that datasets which contain

“filtered” in their description are filtered versions of the

originals, using the less than or equal to filtering from

Landry et al. [31] to remove all hyperedges of size larger

than Nk.

Synthetic data. The synthetic datasets are random

hypergraphs on the same set of nodes with the same

total amount of hyperedges. But the hyperedges are

of varying sizes, uniformly chosen at random over the

vertex set. For each of S1, S2, S3 and S4, the component

symmetric adjacency tensor orders were taken to be

multiples of five until the hypergraph rank i.e. maximum

component adjacency tensor order, with each component

tensor containing approximately the same number of

hyperedges.

C. Overall performance

We evaluate the performance of both implementations

of Algorithm 3, i.e., CCSS-DIRECT that directly com-

putes the polynomial multiplication and CCSS-FFT that

substitutes the polynomial multiplication kernel with a

FFT convolution approach, and Algorithm 4 (CCSS-

MEMO), which memoizes the coefficients to compute

S3TTVC using a single traversal of the CCSS represen-

tation on both categories of datasets.

Comparisons to SOTA methods. In Table II, we

summarize the speedups of CCSS-DIRECT, CCSS-FFT,

and CCSS-MEMO on a single core as compared to

the state-of-the-art single-core Python implementation of

Algorithm 2 [13]. 3 Our CCSS-MEMO outperforms con-

siderably, providing speedups of 1.3 – 18.6 times on the

eight real-world datasets, while CCSS-FFT provides con-

siderable improvements as well. CCSS-DIRECT largely

underperforms, due to using direct convolution instead

3In personal conversations with the authors of [13], it was noted
that a highly-optimized low-level FFT implementation with a Python
front-end was used to obtain their results.
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TABLE I
SUMMARY OF DATASETS.

Category Symbol Dataset |V | |E| Nk Ref. Brief overview of dataset

Real-world

R1 MAG-10 80198 51889 25 [26], [27] subset of coauthorship MicrosoftAcademic Graph
R2 DAWN 2109 87104 22 [26] drugs in patients prior to ER visit
R3 cooking 6714 39774 65 [26] recipes formed by combining different ingredients
R4 walmart-trips 88860 69906 25 [26] sets of co-purchased products at Walmart
R5 trivago-clicks 172738 233202 86 [28] sets of hotel accommodations clicked out by user
R6 amazon-reviews 2193601 3685588 26 [29] (filtered) sets of Amazon product reviews
R7 mathoverflow 5176 39793 100 [30] (filtered) sets of answers by Math Overflow users
R8 stackoverflow 7816553 1047818 76 [30] (filtered) sets of answers by Stack Overflow users

Synthetic

S1
S2
S3
S4

Synthetic 1
Synthetic 2
Synthetic 3
Synthetic 4

2500
2500
2500
2500

25000
25000
25000
25000

30
40
50
60

–

Randomly generated non-uniform hypergraphs
consisting of 5-, 10-, 15-, ... Nk−uniform hy-
pergraphs, with each uniform hypergraph contain-
ing |E|/k hyperedges uniformly chosen from all(|V |
Nl

)
hyperedges, 1 ≤ l ≤ k

TABLE II
SINGLE-CORE SPEEDUPS OF CCSS-DIRECT, CCSS-FFT, AND

CCSS-MEMO VERSUS THE PYTHON IMPLEMENTED

ALGORITHM 2 IN [13].

speedup R1 R2 R3 R4 R5 R6 R7 R8

CCSS-DIRECT 0.7 1.0 0.2 1.4 0.1 - 0.1 -
CCSS-FFT 2.4 3.5 2.8 4.2 0.4 4.7 2.1 2.6

CCSS-MEMO 2.4 5.2 3.0 17.0 1.3 18.6 4.5 4.6

of FFT, with the exception being walmart-trips,

where it obtains a speedup of 1.4. Although the timing

results in Aksoy et al. [13] were obtained using a

different language and system, the speedup observed is

almost two orders of magnitude for the largest dataset,

amazon-reviews, which suggests that the speedup

is due to improvements in the algorithm as opposed

to system and implementation differences. Further, as

the dominate subroutine (the convolution operation) is

implemented using optimized and compiled code (via

a Python-wrapper in [13]) one would expect that much

of the performance differences resulting from language

choice are mitigated. Furthermore, the strong scaling

results seen in Fig. 6 suggest even greater speedups as

we increase the number of cores.

Real-world datasets. Fig. 4 presents the runtime

performance on 128 cores of these three approaches

for the real-world datasets. CCSS-MEMO performs the

best on almost all the eight datasets, achieves 1.97 −
53.98× speedup over CCSS-DIRECT and 0.65−12.45×
speedup over CCSS-FFT. The variation in speedups

across different datasets for CCSS-MEMO is inherent

to the hypergraph structure, and is due to the degree

of overlap in the hyperedges present in the hypergraph.

For the R3 dataset, we can see from Fig. 7 that CCSS

achieves very low compression compared to the coordi-

nate format. Thus, there is no significant advantage in

Fig. 4. Overall runtime performance of CCSS-MEMO, CCSS-
DIRECT and CCSS-FFT for real-world datasets in Table I

using the memoization approach to compute S3TTVC,

which is why we see that CCSS-FFT slightly outper-

forms CCSS-MEMO for higher thread configurations for

this dataset.

Synthetic datasets. Since the synthetic datasets main-

tain the same number of IOU non-zeros across com-

ponent uniform hypergraphs, the number of leaf nodes

per level of the CCSS that contribute the S3TTVC

computation is the same. This allows us to inspect the

effect of the rank of the non-uniform hypergraph on the

performance of all three algorithms. We see from Fig. 5

that sub-coefficient memoization has a significant impact

on performance for hypergraphs of increasing ranks. This

is to be expected since with increasing tensor order, the

reduction in the number of traversals of the CCSS, as

well as sharing of sub-coefficients between overlapping

hyperedges for a uniform hyperedge distribution, would

result in improved performance compared to CCSS-

DIRECT and CCSS-FFT.
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Fig. 5. Comparison of runtime of CCSS-MEMO with CCSS-DIRECT
and CCSS-FFT for synthetic datasets in Table I to highlight effect of
rank of non-uniform hypergraph on S3TTVC computation.

D. Thread scalability

Fig. 6 compares the thread scalability of CCSS-

DIRECT, CCSS-FFT, and CCSS-MEMO for synthetic

and real-world datasets in Table I. Across all datasets,

we see that the CCSS-MEMO approach is faster than

both the baseline approaches. The dashed lines indicate

the ideal speedup lines for each of the three algorithms.

CCSS-DIRECT and CCSS-FFT do not use memoization

for the intermediate ĒN (v) computations. The CCSS-

DIRECT algorithm shows the best scalability of the three

approaches, while both CCSS-FFT and CCSS-MEMO

show decreasing scalability with increasing number of

threads. For both of these approaches, as the work done

per thread reduces (in terms of optimized FFT subrou-

tines in FFTW for CCSS-FFT and in terms of coefficient

W memoization for CCSS-MEMO), the overhead in the

atomic operation becomes more significant, especially

for the hypergraphs with smaller number of nodes,

and this manifests as suboptimal scaling. Moreover, the

scalability of CCSS-MEMO is also affected by the load

imbalance between threads due to the varying number of

IOU non-zeros across trees within the CCSS structure.

E. CCSS Construction

CCSS construction. While the CSS compressed only

in terms of overlapping IOU non-zeros within a sym-

metric adjacency tensor, the CCSS adds another layer

of compactness in terms of shared indices between IOU

non-zeros across multiple symmetric tensors. Moreover,

for computing S3TTVC on the blowup tensor using the

CCSS, we can further prune paths if the leaf node of the

path does not own any IOU non-zeros. Fig. 7(a) shows

the size of the constructed CCSS for representative syn-

thetic and real-world datasets, while Fig. 7(b) examines

the ratio of the amount of time spent in the construction

of CCSS to the runtime of CCSS-MEMO for S3TTVC

computation.

F. H-eigenvector centrality computation speedups

CCSS-MEMO provides a practical framework to com-

pute centrality in large hypergraphs. We compute tensor

H-eigenvector centrality using Algorithm 1 on the largest

real-world dataset in Table I — the amazon-reviews
— on 128 cores. CCSS-MEMO obtains speedups of

6.49× and 3.53× over CCSS-DIRECT and CCSS-FFT

respectively, which shows the applicability of this work

in the analysis of real-world hypergraphs.

VI. CONCLUSION

This work introduces the CCSS, an extension of

the CSS for uniform hypergraphs, to compactly non-

uniform hypergraphs. A novel memoization-based algo-

rithm CCSS-MEMO adapted from the generating func-

tion approach is proposed to compute S3TTVC on the

blowup adjacency tensor of non-uniform hypergraphs.

We demonstrate the performance of our shared-memory

parallel CCSS-MEMO by comparing it to two naive

baseline algorithms using the CCSS - CCSS-DIRECT

and CCSS-FFT - for multiple synthetic and real-world

datasets. In the future, we plan to explore distributed-

memory construction of CCSS and distributed-memory

parallel S3TTVC computation using CCSS-MEMO. Fur-

thermore, we plan to utilize CCSS-MEMO as the com-

putational kernel in extending multilinear PageRank to

nonuniform hypergraphs, where we anticipate its ad-

vanced data structures and parallelization will allow

analysis of datasets previously considered prohibitively

large for tensor analysis. Our fast algorithm would

also help facilitate the multilinear hypergraph clustering

[13]. Moreover, we believe it opens the door for de-

velopment of tensor-based methods for semi-supervised

and supervised hypergraph learning tasks such as node

classification and link prediction.
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