
Malicious Cyber Activity Detection using Zigzag
Persistence

Audun Myers
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

audun.myers@pnnl.gov

Alyson Bittner
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

alyson.bittner@pnnl.gov

Sinan Aksoy
Foundational Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

sinan.aksoy@pnnl.gov

Dan Best
Cyber Security

Pacific Northwest National Laboratory
Seattle, WA, United States

daniel.best@pnnl.gov

Gregory Henselman-Petrusek
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

gregory.roek@pnnl.gov

Helen Jenne
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

helen.jenne@pnnl.gov

Cliff Joslyn
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

cliff.joslyn@pnnl.gov

Bill Kay
Computational Mathematics

Pacific Northwest National Laboratory
Seattle, WA, United States

william.kay@pnnl.gov

Garret Seppala
Cyber Resilience Foundations

Pacific Northwest National Laboratory
Seattle, WA, United States

garret.seppala@pnnl.gov

Stephen J. Young
Computational Mathematics

Pacific Northwest National Laboratory
Seattle, WA, United States

stephen.young@pnnl.gov

Emilie Purvine
Mathematics, Statistics, and Data Science

Pacific Northwest National Laboratory
Seattle, WA, United States

emilie.purvine@pnnl.gov

Abstract—
In this study we synthesize zigzag persistence from topological

data analysis with autoencoder-based approaches to detect mali-
cious cyber activity, and derive analytic insights. Cybersecurity
aims to safeguard computers, networks, and servers from various
forms of malicious attacks, including network damage, data
theft, and activity monitoring. We focus on the cybersecurity
domain and investigate the detection of malicious activity using
log data. We consider the dynamics of the log data and explore
the changing topology of a hypergraph representation of this data
to gain insights into the underlying activity. These hypergraphs
capture complex interactions between processes, together with
their temporal information. To study the changing topology we
use zigzag persistence, which captures how topological features
persist at multiple dimensions over time. We observe that this
detects malicious activity in a cyber data set. To automate this
detection we implement an autoencoder trained on a vectorization
of the resulting zigzag persistence barcodes. Our experimental
results demonstrate the effectiveness of the autoencoder in
detecting malicious activity. Overall, this study highlights the
potential of zigzag persistence and its combination with temporal
hypergraphs for analyzing cybersecurity log data and detecting
malicious behavior.

This work was supported by the Pacific Northwest National Laboratory
operated for the U. S. Department of Energy (DOE) by Battelle under Contract
DE-AC06-76RL01830

I. INTRODUCTION

In this study, we leverage zigzag persistence [9], a concept
from Topological Data Analysis (TDA) [10], [24], to delve
into the temporal activity of cyber data and effectively detect
malicious behavior.

Cybersecurity aims to safeguard computers, networks, and
servers from various forms of malicious attacks including
network damage, data theft, and activity monitoring. These at-
tacks are typically carried out by gaining unauthorized access,
and there is often evidence of these attacks in the underlying
log data which captures information such as timestamps, IP
addresses, ports, and executables. However, detecting mali-
cious activity in the log data is challenging due to its size and
complexity.

One common approach to finding malicious activity in cyber
logs involves constructing graph representations of the data
representations, such as process trees [16] or flow networks
[4], that model dyadic relations between entities. However,
standard graphs cannot capture multi-way interactions that
are common in cyber data. Instead, using higher dimensional
graphs, known as hypergraphs [7], to model cyber logs ef-
fectively captures the complex interactions present between

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 D

ep
en

da
bl

e
an

d
Se

cu
re

 C
om

pu
tin

g
(D

SC
) |

 9
79

-8
-3

50
3-

82
11

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SC
61

02
1.

20
23

.1
03

54
20

4

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

users, processes, ports, and other resources. Hypergraphs have
proven valuable in diverse branches of data science, including
machine learning, biology, and social networks [13], [15], [23].

While hypergraphs capture the complex multi-way relation-
ships, traditional static hypergraphs may fail to additionally
represent the dynamic nature of cyber systems. However,
by incorporating temporal information on nodes, hyperedges,
or incidences, temporal hypergraphs [5], [11], [20] offer a
solution. By allowing nodes and edges to appear and disappear
over time and connect different sets of nodes at different points
in time, temporal hypergraphs provide a suitable framework
for studying dynamical systems of complex relations.

One approach to studying temporal hypergraphs that we
implement in this work is to represent the temporal attributed
hypergraph as a sequence - one hypergraph per sliding time
window representing the state of the system. This sequential
representation of the temporal hypergraph allows one to treat
the sequence as a dynamical process Ht 7→ Ht+1 gaining a
dynamical systems perspective. For the cyber data we study
each hypergraph in the sequence as a set of nodes and a
set of hyperedges, where each hyperedge represents a distinct
named entity (e.g., a program executable, port, or user) and
each hyperedge can include different sets of nodes at different
times.

Our primary objective is to analyze temporal hypergraph
representations of cyber log data to effectively detect malicious
activity. Our claim is that malicious cyber activity will often
exhibit unique attack patterns in the log data, resulting in topo-
logical changes in the representations over time. Specifically,
we investigate a hypergraph representation constructed with
executables as nodes and the destination ports as hyperedges,
which should have a changing topology due to malicious
activity often having more executables at different time scales
compared to benign activity. This intuition will be illustrated
in Section III-C.

The evolution of hypergraph structure and topology over
time naturally fits into a use case of zigzag persistence, a
tool from the field of Topological Data Analysis (TDA). With
temporal hypergraphs providing a valuable framework for
capturing complex dynamical systems we need to build an
understanding of the complex patterns and structural changes
in these temporal hypergraphs, and this is where zigzag persis-
tence comes into play. Zigzag persistence captures how, when,
and for how long topological features at multiple dimensions
persist. For example, is a component lasting for a long time
and always present or does it intermittently appear?

Zigzag persistence has been previously used for studying
temporal graph models [19] of transportation networks and for
intermittency detection. This method has also been recently
extended to study temporal hypergraphs for both cyber and
social network data [18]. By leveraging the power of zigzag
persistence, one is able to delve deep into the intricate temporal
dynamics of (hyper)graphs, unveiling hidden trends, detecting
critical events, and revealing the underlying structural trans-
formations that shape the system’s behavior.

To determine the viability of this approach we will im-

plement an autoencoder as a form of anomaly detection on
a vectorization of the resulting zigzag persistence barcodes.
We will train the model to detect suspicious activity by
investigating vectors that have high reconstruction loss.

We begin in Section II by introducing notation and defini-
tions for temporal hypergraphs, zigzag persistence, and how
we use zigzag persistence to study temporal hypergraphs. We
also introduce the concept of an autoencoder. In Section III
we describe the cyber data, our experimental design, and some
intuition behind using dynamic topology to identify anomalous
behavior. We then demonstrate the ability of the pipeline to
detect malicious activity in IV. We provide future goals and
conclusions on this work in Section V.

II. COMPUTATIONAL TOOLS

The process of computing zigzag persistence for a temporal
hypergraph begins with a sequence of representative hyper-
graphs. We then transform each hypergraph into an abstract
simplicial complex and examine the appearance and disap-
pearance of topological features across multiple dimensions
in this sequence using zigzag persistence. In the final step of
our pipeline we vectorize the zigzag persistence barcode and
use an autoencoder to identify anomalous barcodes. In order
to describe our experimental design in the context of cyber
log data in Section III-B, we first introduce the necessary
definitions and background in a general setting.

A. Hypergraphs and Abstract Simplicial Complexes

A hypergraph, H = (V,E), analogous to a graph, is
represented by a set of vertices, V and a set of (hyper)edges
E. The main difference between a hypergraph and a classical
graph is that an edge e ∈ E can be an arbitrary subset of
vertices e ⊆ V as opposed to a pair. If |e| = k then we say
that e is a k-edge. A temporal hypergraph is a sequence of
n hypergraphs, denoted as H = H0, H1, H2, . . . ,Hn−1. The
sequence can be viewed as a discrete dynamical process, where
Ht transitions to Ht+1, enabling us to gain insights into the
dynamics of the underlying system.

An abstract simplicial complex (ASC), denoted as K, is a
collection of sets that is closed under taking subsets. Formally,
K = {σ} is an ASC if whenever τ ⊂ σ ∈ K then τ ∈ K.
Each set, σ, is called a simplex, and if |σ| = k then σ has
dimension k−1 and is called a (k−1)-simplex. Geometrically,
0-simplices represent points or vertices, 1-simplices represent
lines or edges, 2-simplices represent filled-in triangles, and so
on. For τ, σ ∈ K we say that τ 6= ∅ is a face of σ if τ ⊆ σ.
The definition of an ASC implies that every simplex is closed
under the face relation, meaning it includes all of its faces
(except for the empty set) as defined by the power set of the
simplex.

Note that an ASC can be thought of as a hypergraph with
an extra requirement on the edges, but the reverse is not
true; a general hypergraph need not be an ASC. Although
various methods exist for constructing an ASC from a hyper-
graph [12] in this paper we consider the associated ASC of
a hypergraph [22]. The associated ASC consists of a simplex

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

for each hyperedge. In other words, the associated ASC of a
hypergraph contains all subsets of all hyperedges:

K(H) = {σ ⊆ V : ∃e ∈ E, σ ⊆ e}.

As many real-world hypergraphs have some large hyperedges
this can become costly, and unnecessary if computing only low
dimensional homology. In practice, to reduce computational
complexity, we keep only those simplicies up to a small
maximum dimension, p = 2 or 3.

B. Simplicial Homology

Simplicial homology is an algebraic approach to analyze
the structure of an ASC by quantifying the number of p-
dimensional features. 0-dimensional features are connected
components, 1-dimensional features are graph cycles, 2-
dimensional features are three-dimensional hollow polyhedra,
and so on. The p-dimensional simplicial homology of an ASC,
K, denoted Hp(K), is a vector space whose basis represents
the p-dimensional features of K. The rank of Hp(K) then
counts the number of p-dimensional features. This rank is
denoted βp and called the pth Betti number of K. The
algebraic details of simplicial homology computations and
Betti numbers can be found in [14].

While Betti numbers provide valuable insights into the
changing topology of hypergraph snapshots, they do not
capture the relationships between the topology of consecutive
snapshots. In other words, Betti numbers alone do not reveal if
a feature persists throughout the entire sequence. To address
this limitation and track the changes in homology and their
interconnections across a sequence of ASCs, we employ the
technique of zigzag persistent homology.

C. Persistent and Zigzag Homology

This section provides an introduction to persistent homology
(PH) [24] and how it generalizes to zigzag persistent homol-
ogy. For a detailed introduction to PH we suggest [17], [21],
for zigzag see [9].

PH is used to obtain a sense of the shape and size of a
data set at multiple scale resolutions. To gain some intuition
on what this means we describe a common setting in which
PH is applied, that of a point cloud X ⊆ Rn. At a given scale
(i.e., distance value) we connect points in X within the given
distance to form an ASC. As that scale increases so does the
ASC and topological features are born (appear) and die (are
filled in). PH tracks the birth and death of these features as the
distance scale varies to form a topological fingerprint. Short-
lived features may indicate noise while long-lived ones often
indicate meaningful features. The birth and death thresholds
provide an idea of the general size or geometry of each feature,
which can in turn provide intuition and interpretation back into
the data itself. For example, the presence of a 1-dimensional
loop might mean that the data is cyclical or repetitive whereas
the presence of multiple 0-dimensional components could
indicate strong clustering of the data.

Fig. 1: Example of a 1-dimensional feature being filled in from
one simplicial complex to the next in a nested sequence.

A point cloud is not the only setting for PH. In general, only
a sequence of nested ASCs1, often referred to as a filtration,
is necessary:

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn. (1)

For a given dimension p we can calculate Hp(Ki) for each
Ki. In order to capture how the homology changes from Ki

to Ki+1 we rely on the fact that Ki is a sub-complex of Ki+1

and so the components of the topological features found in Ki

(e.g., the vertices, edges, and higher dimensional simplices)
must also be found in Ki+1. If these components also form a
topological feature in Ki+1 then the feature persists. If they do
not form a feature in Ki+1 then the feature dies. In Figure 1
we see a 1-dimensional feature in K1 consisting of the edges
(a, b), (a, c), (b, c). These edges are present in K2 but they no
longer form a 1-dimensional feature because of the presence
of the triangle (a, b, c). The appearance and disappearance
of p-dimensional features in the filtration is tracked in a
summary known as a persistence barcode, a collection of
intervals, one for each topological feature identified. Each
feature has an associated interval [b, d] that indicates the index
of the appearance of the feature, its birth threshold b, and its
disappearance, its death threshold d. We denote the barcode for
dimension p of a sequence K as Dp(K) = {[bi, di]}, or simply
Dp is the sequence is clear from context. In the example in
Figure 1 the 1-dimensional feature is born at b = 1 and dies
at d = 2. The algebraic mechanics of tracking features across
spaces via their inclusions is best left to the references cited
above. For the purposes of this paper only the intuition is
necessary.

Given a temporal hypergraph sequence we can construct
Ki := K(Hi). If we are lucky enough to have a sequence in
which Ki ⊆ Ki+1 for all i then we can apply PH directly.
However, this is rarely the case. There are plenty of examples
in which hypergraph vertices and edges are both added and
removed over time. This is where zigzag homology, which
extends the concept of PH to handle ASC sequences with
addition and removal of simplices, can be applied. Given an
arbitrary sequence of ASCs, K0,K1, . . . ,Kn, we can form an
augmented sequence with interwoven unions2:

K0 ⊆ K0 ∪ K1 ⊇ K1 ⊆ K1∪K2 · · ·Kn−1 ∪ Kn ⊇ Kn.

1In fact, persistent homology can be applied in even more general settings
but for the purposes of this paper we won’t consider arbitrary topological
spaces or chain complexes.

2Intersections can also be used, just flip around the subset containments.

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Example of a zigzag sequence with interwoven unions.

The idea of zigzag homology is similar to PH. Even though
the inclusions are not in the same direction throughout the
augmented sequence their presence still allows us to track
whether a feature in one ASC is the same as a feature in the
next. In Figure 2 we show an example sequence of three ASCs
with interwoven unions. There is a 1-dimensional feature in
all three ASCs but through the use of zigzag we can see
that they are all different loops. The barcode consists of three
intervals: [0,1] for loop (a, b), (a, c), (b, c), [0.5, 1.5] for loop
(a, c), (a, d), (c, d), and [1.5, 2] for loop (a, b), (a, e), (b, e). If
a loop is born (resp. dies) at a union step between i and i+1
we say that it is born (resp. dies) at the midpoint, i+ 1

2 .
For a more detailed introduction to zigzag persistence in the

context of studying temporal hypergraphs, we refer the reader
to [18], which includes an example illustrating the procedure.

D. Vectorization of Persistence Barcodes

To implement an autoencoder for studying zigzag persis-
tence barcodes we need to create a faithful vector represen-
tation of the barcode. While there are many methods for
vectorizing a barcode for machine learning applications, such
as persistence images [1] and persistence landscapes [8], these
are often high dimensional making the autoencoder training
more burdensome. In this work we use Adcock-Carlsson
Coordinates (ACCs) [2] as they are computationally and
storage efficient and have been shown to provide comparable
performance to the more advanced vectorization methods for
classification tasks [6]. The ACCs are calculated as

ACC(Dp) =
[∑

i

bi(di − bi),∑
i

(dmax − di)(di − bi),∑
i

b2i (di − bi)4,∑
i

(dmax − di)2(di − bi)4
]
.

(2)

We then stacked the ACCs for each dimension p ∈ [1, 2] into
a single eight-dimensional vector.

E. Autoencoder

One of the ways to leverage the power of neural networks
to perform anomaly detection on a dataset is through the use

of autoencoders. An autoencoder is a particular kind of feed-
forward neural network that takes in data, compresses it via
encoding layers, and then attempts to reconstruct the original
representation from the compressed form through decoding
layers as shown in Fig. 3. The metric used to quantify the
difference between the reconstructed version and the original
data is called the reconstruction loss.

Fig. 3: Autoencoder schema.

If an autoencoder is trained on “typical” data, then the
reconstruction loss for unseen typical data should be low
whereas the reconstruction loss for “atypical” data will be
much greater. This is the motivation for utilizing autoencoders
to detect anomalies in data. More precisely, if the reconstruc-
tion loss of unseen data is above a chosen threshold then the
unseen data is considered anomalous.

III. METHODOLOGY

A. Data and Data Preparation

The Operationally Transparent Cyber (OpTC) dataset [3]
used in our experiments was created by the Defense Advanced
Research Projects Agency (DARPA) as part of a mission to
test scaling of cyber attack detection. The data consists of
log records of both benign and malicious activity, with an
associated ground truth document describing the attack events.
The attack events include downloading malicious PowerShell
Empire, privilege escalation, credential theft, network scan-
ning, and lateral movement. The data contains both flow and
host logs. The elements of each record vary depending on the
type of log but the format is standardized allowing for easy
analysis across log-types. In this paper we consider only the
flow subset of records but future work could include a more
comprehensive analysis.

We focus our analysis of the data on the first day, September
23, on a sampling of both benign and malicious hosts, see Ta-
ble I. For the benign set, we selected hosts that did not appear
in the ground truth document and chose a subset of hosts

Benign (Training) Hosts: 0005, 0006, 0010, 0012, 0071, 0162
0213, 0222, 0274, 0304, 0461, 0906

Evaluation (Testing) Hosts: 0201, 0402, 0660

TABLE I: Subset of hosts used for training and testing

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

with varying levels of activity relative to the malicious hosts.
In particular, hosts 0005, 0006, 0010, 0012 had significantly
less (approximately half as much) activity, hosts 0162, 0304,
0461, 0906 had comparable amounts of activity, and hosts
0071, 0213, 0222, 0274 had more activity.

We performed selective filtering of the data as an initial pre-
processing step. In particular, we filtered out actions where the
image path (executable) or source IP address were missing and
where the source IP address corresponded to localhost activity.
Since the network traffic data in the dataset is bidirectional,
we also filtered out actions where the destination port was
ephemeral.

B. Experimental Design

We designed an experiment with the aim to identify source
IPs that are responsible for malicious activity, and the partic-
ular time in which the malicious activity occurs, by using the
topology of their network interactions. We create hypergraphs
for a given source IP and sequence of timeframes, and then
vectorize the hypergraph sequences in two ways: 1) using
zigzag persistence and 2) a more naive hypergraph property
embedding. In order to understand the viability of zigzag
persistence diagrams to encode differences in the topological
dynamics of benign and malicious activity we train two
autoencoders, one on the vectors derived from zigzag persis-
tence and a second on the hypergraph property vectors. We
chose to use an autoencoder based on the assumption that a
large proportion of traffic on the network is typical benign
activity, whereas malicious activity is fairly uncommon. We
then perform autoencoder-based anomaly detection separately
on the two vectorizations and examine how the anomalies align
with the ground truth document. If our zigzag autoencoder
successfully identifies malicious activity on the network, this
provides evidence that the topological information encoded
by the zigzag persistence barcodes can aid in cybersecurity
efforts. We use the autoencoder trained on hypergraph property
vectors as a comparison.

The details and pipeline of these experiments are illustrated
in Fig. 4. Our experimental design begins with the log data,
see the box labeled Log Data in Fig. 4. We show a small
set of the OpTC log data including the specific columns
needed: timestamp, source IP, destination port, and image path
(executable). Using the timestamps, we break this log data into
10-minute windows that overlap by 5 minutes (see Fig. 4 box
with label Windows of Data). From each of these windows
we construct a collection of hypergraphs. For each source
IP we collect all their records. Then we create a hypergraph
with vertices as the executable files and hyperedges as the
destination ports. For the hypergraph pertaining to source IP
X the vertex for executable t is contained in the destination
port edge r if there is a record with the (source IP, destination
port, executable) tuple (X, t, r). In completing this research,
we considered many combinations of hyperedges and nodes
for constructing hypergraphs and found the clearest malicious
activity detection on the OpTC dataset when using the image
path/destination port construction.

For each source IP we apply zigzag persistence to the
temporal sequence of hypergraph snapshots, as shown in Fig. 4
in the box labeled Zigzag Persistence, resulting in a barcode
for each dimension (0 and 1). This full time barcode is further
broken into sub-barcodes over 1 hour sub-windows. Each of
these sub-barcodes are vectorized using the ACCs described in
Section II-D. We trained the zigzag autoencoder on these ACC
vectors from IPs in the benign host list from Table I and tested
on those from the evaluation hosts. For each source IP we
calculated the time series of mean squared error reconstruction
loss as an indicator of abnormal or malicious activity. This is
shown in Fig. 4, in the box labeled Autoencoder.

The zigzag autoencoder contains one fully-connected neural
layer as the encoder and decoder. The input zigzag vectors
are 8-dimensional, the autoencoder compresses the data into
2-dimensional vectors, and decompresses them back into 8-
dimensions. The encoder and decoder of the model learn by
minimizing the mean squared error between the original zigzag
vector and the reconstructed 8-dimensional vector.

We trained a second autoencoder on some naive sum-
mary statistics of the hypergraphs as a feature vector on the
collection of hypergraphs that occurred during the 1 hour
sub-windows. For each of the hypergraphs during each sub-
window we calculated the number of edges, number of nodes,
number of components, and diameter of the largest component
and then concatenated them together. This results in a 48-
dimensional feature vector for each 1 hour window. The
autoencoder again had a latent space of 2-dimensions to make
a fair comparison to the first autoencoder.

By analyzing the reconstruction loss of the two autoen-
coders, we can compare the ability of the zigzag persistence
barcodes and standard summary statistics to detect malicious
activity.

C. Intuition

Before we transition to the results of our experiment we
provide some intuition, through an example, for why the
dynamics of the hypergraph topology, and not just the static
topology of each snapshot, are important to detecting ma-
licious activity. Fig. 5 shows hypergraphs from one benign
and one malicious time period for source IP 142.20.56.202
on Host 201. It is apparent that the structural configuration
of the hypergraph during benign activity differs from that
during malicious activity, but from a topological perspective,
the two snapshots are equivalent. Both hypergraphs exhibit two
components and no higher-dimensional homology, indicating
a similarity in their topological properties.

However, the two isolated snapshots do not tell the entire
story of the topology. While the snapshots are topologically
equivalent they do not account for the underlying dynamics
of the topology (e.g., do these two components persist for
long periods of time or do they quickly evolve?). By looking
beyond the isolated snapshots we can gain a quick insight
that, in fact, the dynamics of the malicious activity change at
a much higher rate than the dynamics of the benign activity.
Figure 6 shows the sequence of image path executables for

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

...

...
...

...
...

...

Log Data

Windows of Data Hypergraphs Zigzag Persistence

...

... ...

Summary Statistics

...

Autoencoder

Autoencoder

Fig. 4: Experimental design pipeline for study OpTC log data with autoencoders trained on the ACC vectors of the subwindowed
zigzag persistence barcodes compared to the autoencoder trained on the concatenated summary statistics of hypergraphs during
the same subwindows.

(a) Benign Activity (b) Malicious Activity.

Fig. 5: Hypergraphs formed during malicious and benign activ-
ity for source IP 142.20.56.202 on host 201 using destination
ports as hyperedges and image path executables as nodes.

source IP 142.20.56.202 on host 201 during the same 20
minute benign and malicious activity windows associated to
the hypergraphs in Fig. 5. As shown, during the benign activity
the only executables used were System and svchost.exe and
tend to be executed every few minutes, while in the malicious
activity many executables are used and are executed much
more frequently. It is clear from this example that benign and
malicious activity show changes at different time scales. As
we will see in the results, the dynamics of the topology as
shown by the zigzag barcode vectorizations allow us to detect
a difference between benign and malicious activity patterns.

IV. RESULTS

Here we demonstrate the ability of both the zigzag persis-
tence and summary statistics to detect malicious activity for an
example source IP. Namely, we demonstrate these results for
source IP 142.20.56.202 for malicious activity and source IP
142.20.56.175 for benign activity on host 201 on September
23, 2019. We chose this malicious source IP and host to
demonstrate the effectiveness of this autoencoder due to the
variety of attacks during this time as shown in the ground
truth data provided in the GitHub repository3. While there are

3See https://github.com/FiveDirections/OpTC-data for red team ground
truth data

(a) Benign Activity

(b) Malicious Activity.

Fig. 6: Sequence of image path executables for a source IP
142.20.56.202 during 20 minute benign and malicious activity
windows on host 201 (same windows as in Fig. 5).

limited malicious source IPs during this time window there are
a very large number of benign source IPs. We chose source IP
142.20.56.175 as an exemplary benign source IP, but we found
very similar dynamics and reconstruction loss values for other
benign source IPs.

Figure 7 shows the zigzag persistence barcode (7a) and the
reconstruction losses over time for the ACC vectors and the
hypergraph summary statistics (7b). In both plots we have
highlighted each of the ground truth malicious events from
the OpTC ground truth diary as red vertical bars.

The main takeaway from Figure 7 is that while both

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

(a) Zigzag persistence barcodes.

(b) Autoencoder reconstruction loss (mean squared error).

Fig. 7: Autoencoder results for malicious source IP 142.20.56.202 on host 201 using the ACCs of the windowed zigzag
persistence barcode compared to summary statistics with highlight red vertical lines for each malicious activity instance
recorded in OpTC ground truth.

ACCs and hypergraph summary statistics seem to show an
anomaly during the malicious activity, the autoencoder trained
on the ACCs more precisely detects the malicious activity.
The summary statistics show a broad range in time when
the reconstruction loss is high (approximately 9:30 to 14:30)
which is larger than the range occupied by the malicious
activity. On the other hand, the autoencoder trained on the
ACCs is able to accurately detect the first sequence of attacks
with a spike in reconstruction loss from approximately 11:15
to 11:40, which closely correlates to when the first attack
sequence occurred. However, there is a second spike from
approximately 11:45 to 12:15 that does not correspond to an
attack. We believe this is due to the large amount of activity
that the red team agent is performing during this time even if
it was not logged as malicious. Lastly, the autoencoder trained
on the ACCs was not able to pick up the second attack which
was dominated by a series of ARP scans and ping sweeps.
Unfortunately, our hypergraph construction is not sensitive to
this attack as many of the lines in the log data corresponding
to ARP scans are not labeled with a source IP. And when the
lines are associated with a source IP they are repetitive (e.g.,
the ping responses repeatedly have image path System and
destination port 0) and do not show up as significant changes
in the hypergraphs topology.

As a point of comparison we show the same zigzag and
reconstruction loss plots for an exemplary benign source IP
in Fig. 8. From the zigzag barcode (8a) we see that there are
typically no 1-dimensional features, as evidenced by the empty
D1 barcode, for benign activity. Moreover, the 0-dimensional

features have a predicatble, periodic behavior. This is further
substantiated by the reconstruction loss for both the ACCs and
summary statistics being very low (compare the y-axis scales
in Fig. 8b to those in Fig. 7b).

V. CONCLUSION

The work we present in this paper shows that the dynamics
of topology of hypergraphs representing cyber log data can
be effective for distinguishing malicious activity from benign.
However, we have noted some limitations that we plan to
explore in future work. In particular, the ACC vectorization
strategy for persistence barcodes is rather coarse. We plan to
evaluate more complex representations like persistence images
and landscapes for this vectorization step.

Additionally, we are aware that our hypergraph construc-
tion linking executables to destination ports does not capture
all types of malicious behavior. We will experiment with
additional hypergraph constructions to understand how other
malicious behavior can be encoded.

Finally, in order for cyber analysts to trust the results of our
pipeline we must be able to provide some interpetation of the
topological patterns in the context of the log data and ground
truth malicious activity. This is ongoing work and provides an
exciting opportunity for collaboration between cyber security
researchers and mathematicians.

REFERENCES

[1] Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Ship-
man, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.:

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

(a) Zigzag persistence barcodes.

(b) Autoencoder reconstruction loss (mean squared error).

Fig. 8: Autoencoder results for benign source IP 142.20.56.175 on host 201 using the ACCs of the windowed zigzag persistence
barcode compared to summary statistics with highlight red vertical lines for each malicious activity instance recorded in OpTC
ground truth.

Persistence images: A stable vector representation of persistent homol-
ogy. Journal of Machine Learning Research 18(8), 1–35 (Jan 2017),
http://jmlr.org/papers/v18/16-337.html

[2] Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions
on persistence bar codes. arXiv preprint arXiv:1304.0530 (2013)

[3] Agency, D.A.R.P.: Operationally transparent cyber (optc) data release
(2020)

[4] Aksoy, S.G., Purvine, E., Young, S.J.: Directional laplacian centrality
for cyber situational awareness. Digital Threats: Research and Practice
(DTRAP) 2(4), 1–28 (2021)

[5] Antelmi, A., Cordasco, G., Spagnuolo, C., Scarano, V.: A design-
methodology for epidemic dynamics via time-varying hypergraphs.
In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems. pp. 61–69 (2020)

[6] Barnes, D., Polanco, L., Perea, J.A.: A comparative study of machine
learning methods for persistence diagrams. Frontiers in Artificial Intel-
ligence 4, 681174 (2021)

[7] Berge, C.: Hypergraphs: combinatorics of finite sets, vol. 45. Elsevier
(1984)

[8] Bubenik, P.: Statistical topological data analysis using persistence land-
scapes. Journal of Machine Learning Research 16(3), 77–102 (2015),
http://jmlr.org/papers/v16/bubenik15a.html

[9] Carlsson, G., de Silva, V.: Zigzag persistence. Foundations
of Computational Mathematics 10(4), 367–405 (Apr 2010).
https://doi.org/10.1007/s10208-010-9066-0

[10] Edelsbrunner, Letscher, Zomorodian: Topological persistence and sim-
plification. Discrete & Computational Geometry 28(4), 511–533
(Nov 2002). https://doi.org/10.1007/s00454-002-2885-2

[11] Fischer, M.T., Arya, D., Streeb, D., Seebacher, D., Keim, D.A., Worring,
M.: Visual analytics for temporal hypergraph model exploration. IEEE
Transactions on Visualization and Computer Graphics 27(2), 550–560
(2020)

[12] Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B.,
Wang, Y., Ziegelmeier, L.: Homology of graphs and hypergraphs (May
2021), https://www.youtube.com/watch?v=XeNBysFcwOw

[13] Han, E.H., Karypis, G., Kumar, V., Mobasher, B.: Hypergraph based
clustering in high-dimensional data sets: A summary of results. IEEE
Data Eng. Bull. 21(1), 15–22 (1998)

[14] Hatcher, A.: Algebraic Topology. Cambridge University Press, New York
(2001)

[15] Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and
cellular networks. PLOS Computational Biology 5(5), 1–
6 (05 2009). https://doi.org/10.1371/journal.pcbi.1000385,
https://doi.org/10.1371/journal.pcbi.1000385

[16] Mamun, M., Shi, K.: Deeptaskapt: insider apt detection using task-
tree based deep learning. In: 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom). pp. 693–700. IEEE (2021)

[17] Munch, E.: A user’s guide to topological data analysis. Journal of Learn-
ing Analytics 4(2) (Jul 2017). https://doi.org/10.18608/jla.2017.42.6

[18] Myers, A., Joslyn, C., Kay, B., Purvine, E., Roek, G., Shapiro, M.: Topo-
logical analysis of temporal hypergraphs. In: Algorithms and Models for
the Web Graph: 18th International Workshop, WAW 2023, Toronto, ON,
Canada, May 23–26, 2023, Proceedings. pp. 127–146. Springer (2023)

[19] Myers, A., Muñoz, D., Khasawneh, F., Munch, E.: Temporal network
analysis using zigzag persistence (2022)

[20] Neuhäuser, L., Lambiotte, R., Schaub, M.T.: Consensus dynamics on
temporal hypergraphs. Physical Review E 104(6), 064305 (2021)

[21] Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A
roadmap for the computation of persistent homology. EPJ Data Science
6(1) (Aug 2017). https://doi.org/10.1140/epjds/s13688-017-0109-5

[22] Ren, S.: Persistent homology for hypergraphs and computational tools —
a survey for users. Journal of Knot Theory and Its Ramifications 29(13),
2043007 (Nov 2020). https://doi.org/10.1142/s0218216520430075

[23] Zlatić, V., Ghoshal, G., Caldarelli, G.: Hypergraph topological quantities
for tagged social networks. Physical Review E 80(3), 036118 (2009)

[24] Zomorodian, A., Carlsson, G.: Computing persistent homology. Dis-
crete & Computational Geometry 33(2), 249–274 (Nov 2004).
https://doi.org/10.1007/s00454-004-1146-y

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on October 06,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

