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We devote the rest of the issue to cyber analytic tools 
that have been developed by researchers that are op-
erating on real-world data such as network packet cap-
tures and binary files. Authors from NSA’s Laboratory 
for Advanced Cybersecurity Research collaborated with 
George Mason University to tackle the timely problem of 
detecting compromised Internet of Things (IoT) devices 
by leveraging existing ML image processing capabilities to 
analyze IoT wireless protocols for malicious behavior. The 
system provides both situational awareness and anomaly 
detection capabilities by providing alerts in an easy-to-use, 
interactive dashboard.

The next article, "Malware Bytes" explores the effec-
tiveness of looking at the bytes of malware files using ML 
techniques on byte N-grams. This work, which leverages 
over a decade of research at the Laboratory for Physical 
Sciences, has been shown to detect previously unseen mal-
ware and has inspired new ways to improve the computing 
architecture used for training these algorithms and scan-
ning the “fire hose of files” entering an enterprise network 
every day.

The final feature article reviews recent work at the 
Laboratory for Telecommunication Sciences to develop 
a new analytic tool to improve binary file analysis. The 
new tool, YELLOWTIGER, extracts features from binaries 
to help analysts identify similar code structures that may 
indicate malicious behavior, identify authorship, and 
predict provenance. 

We thank the authors for their continuing contributions 
to the important field of cyber analytics research—an 
essential component in today’s cybersecurity architecture. 
We also extend our thanks to Jessica for the outstanding 
editing, layout, and artwork throughout this issue. 
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STEPPING OUT OF FLATLAND: 
Discovering Behavior Patterns 
as Topological Structures in 
Cyber Hypergraphs
H e l e n  J e n n e ,  S i n a n  G .  A k s o y,  D a n i e l  M .  B e s t ,  A l y s o n  B i t t n e r,  
G r e g o r y  H e n s e l m a n - P e t r u s e k ,  C l i f f  J o s l y n ,  B i l l  K a y,  A u d u n  M y e r s , 
G a r r e t  S e p p a l a ,  J a c k s o n  Wa r l e y,  S t e p h e n  J .  Yo u n g ,  E m i l i e  P u r v i n e 

Data breaches and ransomware attacks occur so often that they have become 
part of our daily news cycle. Last year, 1,802 data compromises affected 
422 million people [1]. In a 2022 op-ed co-written by the Cybersecurity and 

Infrastructure Security Agency Director and National Cyber Director, they described 
the omnipresent threat of cyberattacks as “the new normal,” writing that in the 
modern landscape of complex cyber threats, “our shields will likely be up for the 
foreseeable future” [2]. This is due to a myriad of factors, including the increasing 
number of Internet-of-Things devices, shift to remote work during the pandemic, and 
advancement in adversarial techniques—all of which contribute to the increase in 
both the complexity of data captured and the challenge of protecting our networks. 
At the same time, cyber research has made strides, leveraging advances in machine 
learning and natural language processing to focus on identifying sophisticated 
attacks that are known to evade conventional measures. While successful, the 
shortcomings of these methods, particularly the lack of interpretability, are inherent 
and difficult to overcome. Consequently, there is an ever-increasing need to develop 
new tools for analyzing cyber data to enable more effective attack detection.

In this article, we present a novel framework based in the theory of hypergraphs 
and topology to understand data from cyber networks through topological 
signatures, which are both flexible and can be traced back to the log data. While 
our approach’s mathematical grounding requires some technical development, 
this pays off in interpretability, which we will demonstrate with concrete examples 
in a large-scale cyber network dataset. These examples are an introduction to 
the broader possibilities that lie ahead; our goal is to demonstrate the value 
of applying methods from the burgeoning fields of hypernetwork science and 
applied topology to understand relationships among behaviors in cyber data.
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From Flatland to Cyberland
In US and NATO military doctrine, cyberspace is 
often considered a domain, alongside land, sea, 
air, and space [3, 4]. But unlike these domains, we 
cannot travel into cyberspace and physically touch 
the system processes or digital information. Because 
of the lack of physical constraints in cyber, many 
have observed that thinking of it as a domain could 
be a hindrance by putting unnecessarily restrictive 
limits on what behaviors are possible [4, 5, 6]. In a 
recent article [6], Pierre Trepagnier of Massachusetts 
Institute of Technology Lincoln Laboratory con-
tended that instead we should think of cyberspace 
as another dimension. He presented his argument 
using the classic novella Flatland, by Edwin A. Abbott, 
which takes place in a two-dimensional world inhab-
ited by geometric figures. In the story, the narrator, a 
square, is visited by a sphere from three-dimensional 
Spaceland, who appears to be a circle as it passes 
through Flatland. Despite the sphere’s best efforts, 
the square cannot comprehend three-dimensional 
space until the sphere takes him there. In his essay, 
Trepagnier identifies numerous parallels between 
our challenges to understand cyberspace and the 
square’s inability to understand Spaceland. He writes,

In our physical world, our senses have evolved 
to perceive threats directly. But we cannot 
perceive packets; our perception of cyber is 
entirely synthetic, through sensors which we 
place out in Cyberland and whose outputs we 
route back into [our world].

To elaborate on Trepagnier’s description, sensors 
in Cyberland collect timestamped data called logs. 
Log data are generated from every device and appli-
cation in the network, including routers, firewalls, 
workstations, and servers. Logs consist of digital 
observations, which vary in terms of the granularity, 
scope, and modality of information captured. For 
example, host logs are records of everything that hap-
pens at a system level, where a host is an individual 
computer, server, or other connected device. These 
records include login attempts, file creation and de-
letion, registry edits, errors, warnings, and other pro-
cesses. Network logs offer a higher level perspective; 
they record information that crosses the boundaries 
of individual hosts like the flow of digital packets 
between hosts, and thus offer valuable insights into 
network-wide patterns. Gaining a complete picture 
of the current cyber landscape requires synthesizing 
information from host logs, network logs, and other 

data sources. Each stream of logs provides incom-
plete information, but they are linked through the 
imperceptible dimension of Cyberland. The challenge 
is modeling these data in such a way that recovers the 
unseen complexity and allows cyber analysts to take 
action based on the understanding they gain from 
the models.

OpTC data: Introduction and context
Before describing our approach to modeling cyber 
data, we introduce the dataset we will use through-
out this article: the Operationally Transparent Cyber 
(OpTC) dataset [7]. The OpTC dataset was released 
by the Defense Advanced Research Projects Agency 
(DARPA) Transparent Computing program to enable 
research that enhances understanding of and de-
fense against advanced persistent threats (APTs) at 
scale. An attack by an APT is an extended cyberattack 
(low and slow) that, for example, aims to steal highly 
sensitive data or to impose the will of the malicious 
actor. It involves multiple stages, including initial in-
filtration, expanding access, using that access to gain 
administrative credentials, moving laterally to other 
servers or workstations, and finally exfiltrating data.

The OpTC dataset contains over 17 billion events 
generated from a simulated network consisting of 
approximately 500 hosts, scripted to mimic daily user 
activities (e.g., downloading files from emails, editing 
files, and browsing the Internet), along with three 
days of annotated red team activity representing APT 
scenarios. The OpTC dataset brings both network and 
host logs together in a common format with common 
metadata fields, allowing one to make connections 
between system processes and other individual log 
events. We show an excerpt of the logs in table 1 to 
illustrate some of the detail provided in the dataset. 
These are a particular type of network logs, called 
network flow logs, that summarize host-to-host 
communications, such as a computer accessing a 
website or a user opening a remote desktop connec-
tion to access another computer. In the OpTC data, a 
single network flow log contains the start time of the 
flow (timestamp), the length of the flow (duration), 
the originating computer system [source Internet 
Protocol (IP) address], the recipient (destination 
IP address), the interface used to send and receive 
communication (source and destination port), and 
the method of sending data (protocol), in addition 
to other metadata such as the path to the program 
that started the event (image path) and which entity 
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a. These are only a fraction of the keys (columns) recorded in the data. There are common keys shared among all log types, like ac-
tion-object, host, principal, process ID, and others, but also fields unique to each log type.

is performing the action (principal). The richness of 
the data, documentation of red team attacks in the 
ground truth, and subsequent in-depth analysis of 
the network and host events [8] has led to the use of 
OpTC in a variety of research programs for cyberse-
curity threat detection [9, 10, 11, 12, 13].

TABLE 1. Excerpt of network flow logs of OpTC dataa

time action-object host principal pid source IP dest IP dest 
port

protocol image 
path

13:51:28 START-FLOW SysClient0501 bantonio 2956 142.20.57.246 142.20.61.189 3389 TCP mstsc.exe

13:52: 08 MESSAGE-FLOW SysClient0974 sbobertz 3768 142.20.59.207 153.129.45.5 80 TCP firefox.exe

13:54:36 MESSAGE-FLOW SysClient0974 sysadmin 3636 142.20.59.207 142.20.56.6 3389 TCP mstsc.exe

13:55:40 START-FLOW SysClient0811 rsantilli 5712 142.20.59.44 142.20.61.130 135 TCP python.exe

Hypergraphs as models of cyber 
network data
Activity in the OpTC data (and cyber log data in gen-
eral) is characterized by many complex relationships 
among groups of items recorded in the logs. For ex-
ample, groups of ports can be related by virtue of the 
processes that use them; or groups of IP addresses 
can be related based on the protocols they employ for 
their various communications. To model and analyze 
the relationships present in complex data like the 
OpTC data, we turn to hypergraphs. As mathematical 
models of data with group-wise relationships, hyper-
graphs have provided great benefit in recent years to 
researchers across a variety of domains [14, 15, 16, 
17, 18, 19].

A hypergraph consists of a set of vertices, repre-
senting individual entities, along with a collection of 
hyperedges, where each hyperedge is a subset of the 
vertices of any size and represents some joint prop-
erty among the vertices it contains. For example, the 
relationship between users and destination ports can 
be naturally structured as a hypergraph where the 
users are vertices, and each destination port hyper-
edge contains the users that use that port, as shown 
in figure 1 (left and right). In general, when data 
come as individual records and each record contains 
the same field names, one can choose two fields (e.g., 
source IP address and destination port in network 
flow logs, or command line and user in host logs) and 
model the relationship among the items that fill those 
fields using a hypergraph.

FIGURE 1. These two user–port hypergraphs (left and right) have the same graph representation (center). Both hypergraphs capture 
user behavior information through the hyperedge containment and intersection patterns that the graph cannot. 

As the name suggests, hypergraphs are general-
izations of graphs, which model pairwise relation-
ships by restricting hyperedges (called “edges” in 
this context) to be size two. In cyber data, graphs 
have been used to model communications between 
IP addresses, relationships between users, and 
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b. The terms “graph” and “network” are often used synonymously, with “network” usually connoting when a graph is modeling real-world data. 
However, from here on we will use the term “graph” to avoid confusion with the cyber use of the word “network.”

similarities among malware [10, 20, 21, 22, 23, 24, 
25]. But graphs should be used with caution in data 
with complex relationships; as we learned from 
Flatland, appearances when projecting down from 
higher dimensional spaces can be deceiving. For 
example, the aforementioned user–port relationship 
with a hypergraph can also be represented as a graph 
where two user vertices are linked by an edge when 
they perform actions using the same port. However, 
modeling the data with a graph results in information 
loss: the same user–user graph can correspond to 
many user–port hypergraphs, as shown in figure 1. 
As the examples in this figure illustrate, hypergraphs 
can capture complexities that graphs cannot. While 
two edges in a graph can only interact by sharing one 
vertex, two hyperedges in a hypergraph can interact 
in many more ways. Hyperedges can intersect in any 
number of vertices, or one hyperedge can be fully 
contained within another. If we think of hyperedges 
as representing groups of vertices that share a behav-
ior, the hypergraph perspective allows us to model 
how behaviors are linked or related by virtue of the 
vertices which display that behavior. The question 
then is how to use these models to gain understand-
ing of the data and the behaviors therein.

A recent and active area of research to study hy-
pergraph models of data is “hypernetwork science” 
[26], taking inspiration from the well-established 
field of “network science,”b which is the analysis of 
graph models of real-world data. Often in hyper-
network science, methods that were developed to 
analyze graph models are extended and generalized 

to apply to hypergraphs; but in many cases, this is 
not a trivial task. One such graph method that has 
proven valuable across a wide range of fields is the 
study of how small, connected graph substructures 
(also known as “motifs”) appear in large graphs. A 
graph motif is nothing more than a small connectiv-
ity pattern or signature. Some of the simplest graph 
motifs include the triangle, square, n-star, and n-path. 
All 3-edge motifs—the triangle, 3-star, and 3-path—
are illustrated in figure 2 (left). In cyber graphs, the 
“connector,” where multiple vertices all connect to the 
same pair of vertices (an example with three central 
vertices is pictured in figure 2), and n-star motifs are 
common and indicative of certain kinds of network 
behaviors and configurations [27].

FIGURE 2. The first column shows three-edge graph motifs; the second column shows an example of a connector motif, and the third 
column shows seven of the 27 three-hyperedge hypergraph motifs.

In order to extend motifs to hypergraphs, with 
the straightforward generalization being small, 
connected subhypergraphs, we look to recent work 
that defines 27 hypergraph motifs with three hyper-
edges [28] and develops algorithms to count them. 
But the authors of that work note that generalizing 
their hypergraph motifs to four and five hyperedg-
es results in a combinatorial explosion: there are 
1,853 four-hyperedge hypergraph motifs (compared 
to 5 four-edge graph motifs) and over 18.6 million 
five-hyperedge hypergraph motifs (compared to 12 
five-edge graph motifs). To illustrate just some of the 
complexities of hypergraph motifs, we again refer 
to figure 2 (right) where seven of the 27 three-hy-
peredge hypergraph motifs are shown, those that 
can occur with just three vertices. As we will see in 
the OpTC data, these complexities, in particular the 
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presence of single-vertex hyperedges and hyperedge 
containment, are important for capturing different 
behavior patterns. Because of their combinatorial 
complexity, for hypergraph motifs to be useful in 
characterizing these patterns, they must be studied 
as a small number of groups of motifs where each 
group contains motifs of “similar enough” structure. 
While one could imagine many ways to define similar 
enough structure, resulting in different groupings of 
motifs, one way is to turn to the mathematical field of 
topology, which provides techniques for summariz-
ing structure in a flexible and interpretable way. This 
forms the basis of our framework; we define topo-
logical signatures in hypergraphs by grouping motifs 
that are topologically similar.

The topological perspective
Topology studies different shapes with a flexible no-
tion of what it means for two shapes to be “the same,” 
where two shapes are considered the same if they can 
be continuously deformed (via stretching, twisting, 
bending, but not breaking, tearing, or puncturing) 
into one another. Figure 3 shows a classic example of 
a continuous deformation between a coffee cup and 
a donut. This concept is made rigorous by studying 
what are called topological invariants. A topological 
invariant is a mathematical quantity that identifies 
certain properties of shapes and is guaranteed to be 
equal for two shapes that are the same topologically. 
For the last 20 years, topological invariants have been 
used as a tool to make sense of high-dimensional data 
in a field called topological data analysis. One of the 
most studied topological invariants in the data sci-
ence community is called homology, which informally 
is a method of counting holes in a shape. The number 
of connected components (zero-dimensional holes), 
loops (one-dimensional holes), voids (two-dimen-
sional holes, like the inside of a basketball), and high-
er dimensional analogs are topological invariants that 

FIGURE 3. A donut and a coffee cup are topologically the 
same because the coffee cup can be continuously deformed 
into a donut. [Image credit: Lucas Vieira, Public domain, via 
Wikimedia commons]

conveniently encode multidimensional structures in a 
way that has proven useful in many applications and 
for different data types [29, 30].

Core to the notion of homology is the idea of a con-
tinuous deformation. But it is not immediately clear 
what that means in the case of a hypergraph. While 
we can draw a hypergraph on a page, it is not some-
thing we can hold in our hands and twist or bend. 
To leverage the topological invariant of homology to 
create topological signatures in the context of hyper-
graphs, we need a method to translate hypergraphs 
into topological objects that we can deform. Example 
building blocks of such tangible topological objects, 
in dimensions we can perceive, are points (zero-di-
mensional), lines (one-dimensional), solid triangles 
(two-dimensional), and solid tetrahedra (three-di-
mensional); these building blocks are shown connect-
ed together to form an example topological object in 
figure 4. It will be important later to know that these 
building blocks also include their lower dimensional 
boundaries. For example, a triangle includes its three 
edges and three vertices; a tetrahedron includes its 
four triangular faces, six edges, and four vertices. 
Higher dimensional analogs exist, and even though 
we cannot hold them, the theory for computing their 
homology extends seamlessly. Translating from a 
hypergraph to one of these topological objects can be 
done in many ways, and the topological holes of each 
one will tell us something different about the hyper-
graph and the data that was used to construct it.

FIGURE 4. This topological object is composed of points, lines, 
solid triangles (orange), and solid tetrahedra (yellow). 

Translating hypergraphs into the 
language of topology
Our research team is exploring various methods to 
translate hypergraphs into topological objects and 

FEATURE
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what insight the homology of these objects provides 
in the context of cyber data. As we will see, after find-
ing a hole in a topological translation of a hypergraph, 
we can identify the hypergraph motif that gives rise 
to the hole. When multiple hypergraph motifs give 
rise to the same dimension of hole, we group them 
as motifs that are topologically similar through the 
lens of that translation. This group of motifs is then a 
topological signature.

We have identified two hypergraph translation 
methods of particular interest, which result in two 
types of groupings of motifs into topological signa-
tures, but there are others that could also lead to 
interesting insights into cyber datasets [31, 32]. We 
briefly mention the first and provide a reference to 
work where we show its use in cyber. We then go 
into more detail in the second construction, including 
grounding it by interpreting the holes in the context 
of benign and adversarial activity in the OpTC data.

Perhaps the most straightforward way to create a 
topological object from a hypergraph is by replacing 
each hyperedge of size k with a solid (k-1)-dimen-
sional building block. We will refer to this as the clo-
sure of the hypergraph. In figure 5, we show three ex-
ample hypergraphs (first column) with their closures 
(second column). Notice that two of the hypergraphs 
in this figure have the same closure, which has a 
one-dimensional hole. Therefore, these hypergraphs 
are topologically similar motifs through the lens of 
the hypergraph closure. This is because forming the 
closure of a hypergraph is akin to adding every sub-
set of every hyperedge to the hypergraph, whether 
or not it was there to begin with. When a hyperedge 
of size four is present, for instance, we replace it with 
the solid tetrahedron that also includes all the 3-way 
triangular faces, 2-way edges, and singleton vertices. 
Recently our team studied how motifs giving rise to 
holes in the closure of hypergraphs that capture the 
relationship between source IP address and exe-
cutable (e.g., python.exe) in small time windows in 
the OpTC data change over time [33]. In that work, 
unusual patterns of topological change correlated 
with some instances of malicious network behavior 
recorded in the ground truth.

Motifs found using the closure of a hypergraph 
identify what we might consider as intrinsic cycles, 
those that you can see if you just look at a drawing of 
the hypergraph. This is certainly a valuable perspec-
tive but forming the closure only provides one way 
of studying how behaviors, captured by hyperedges, 
interact. Another approach comes from the earlier 

observation that a hyperedge can be interpreted 
as a group of vertices sharing a behavior. From this 
perspective, we posit that hyperedge containment 
relations are important since they mean that a group 
of vertices that share one behavior (the smaller hyp-
eredge) also fully share another behavior (the larger 
hyperedge). This position leads us to introduce our 
second method to translate a hypergraph into a to-
pological object that we call the nesting object of the 
hypergraph. To put it concisely, the nesting object in-
cludes a vertex for each hyperedge in the hypergraph 
and a (k-1)-dimensional building block for every se-
quence of k hyperedges where one is a subset of the 
next. To explain how this construction relates to our 
assertion that hyperedge containments are import-
ant, we build the nesting object in a two-step process.

In the first step of the translation, we create the 
hyperedge containment graph (HCG) of a hypergraph 
that has one vertex for each hyperedge, and an edge 
in the HCG represents a hyperedge containment 
relationship in the hypergraph. Concretely we add an 
edge in the HCG between the vertices corresponding 
to two hyperedges whenever one of the hyperedges 
is contained in the other. The third column of figure 
5 shows the HCG for the same three example hyper-
graphs. Since any graph, and in particular our HCG, 
consists of points (vertices) and line segments (edg-
es), it is already a topological object in that sense, 
and thus can contain one-dimensional holes (loops). 
But it cannot contain any higher dimensional holes. 
Moreover, the one-dimensional holes in the HCG can 
be generated from different types of hypergraph sub-
structures. Specifically, we define a nest of hyperedg-
es as a sequence of hyperedges, each one a subset of 
the next. In the case of three hyperedges, this is when 
one hyperedge is completely contained in another 
hyperedge, which is itself completely contained in 
a third hyperedge. Then in the HCG, there is a 3-cy-
cle between those three hyperedges. These nests 
are interesting in their own right, but they are easy 
to identify in the HCG as the completely connected 
subgraphs; the machinery of homology is not needed 
to identify nests. Other holes in the HCG encode re-
lationships among the nests, and finding those holes 
can point to more complex behavior patterns. To find 
these we need to look not at the nests themselves, 
but at the relationships between them. This is the 
motivation behind the second step of our process, to 
enrich the HCG with higher dimensional structure to 
distinguish between the nests and the relationships 
among the nests.
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c. The technical term is restricted barycentric subdivision. If you are interested in learning more about the technical details 
see [32, 34, 35].

FIGURE 5. In the first column are three small hypergraphs with their closure (second column), hyperedge containment graph (third 
column), and nesting object (fourth column). In the closure, the topological building blocks (triangles and tetrahedra) are colored cor-
responding to the hyperedges that give rise to them. In the hyperedge containment graph and nesting object, the vertices are colored 
the same as their corresponding hyperedges. 

For homology to ignore cycles created by these 
nests and find other complex containment patterns 
among the nests we must “fill in” the one-dimension-
al holes they create. Specifically, we replace every 
cycle of length 3 in the HCG with a solid triangle, and 
every set of 4 vertices that are completely connected 
(known as a 4-clique, and representing a nested se-
quence of 4 hyperedges) with a solid tetrahedron. We 
do this in general for all k-cliques (set of k vertices 
that are all pairwise connected) in the HCG, replacing 
them with (k-1)-dimensional analogs of tetrahedra. 
The result of this procedure is the nesting object.c We 
noted above that homology of the closure identifies 
“intrinsic” holes in the hypergraph. In the case of the 
nesting object, we understand that one-dimensional 
holes correspond loosely to cycles in which hyper-
edges are fully contained within intersections of oth-
er hyperedges (although the exact structure that is 
identified through homology of the nesting complex 
is more nuanced, especially in higher dimensions). 
We can see this difference between holes in the clo-
sure and nesting object illustrated in figure 5, where 

the rightmost column shows the nesting object of 
our three example hypergraphs. What is interesting 
is that, while the top two hypergraphs had the same 
closure, it is now the bottom two that have topologi-
cally similar nesting objects. Both have a one-dimen-
sional hole. The cycles are different lengths, 4 and 6, 
but since the overall pattern of pairs of intersecting 
hyperedges containing a hyperedge within their 
intersection is the same, these two small hypergraph 
motifs that give rise to the one-dimensional holes are 
grouped as topologically similar. The top hypergraph 
in the figure is missing one of the hyperedges in the 
intersection of two larger hyperedges which breaks 
the cycle and so it is not topologically similar through 
the lens of the nesting object.

We now have all the mathematical background 
needed to explore the OpTC data through the nesting 
object of a specific hypergraph construction. We will 
see how groups of hypergraph motifs that are topo-
logically similar arise from similar behaviors, many of 
which correspond to adversarial activity.

FEATURE
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d. The port changes from HTTPS to SSH at 13:11 when bantonio starts a reverse SSH connection. 

e. A DC is a machine responsible for managing network security requests. It provides a service to ensure that only users with authoriza-
tion on a resource are allowed access.

Topological signatures in the OpTC data
In the remainder of this article, we delve into exam-
ples from the OpTC data where we look for structure 
in the form of topological signatures. These exam-
ples show how the homology of the nesting objects 
of hypergraphs provided insight into interpretable 
patterns of activity that were often tied to malicious 
actions. As previously described, due to the compre-
hensive nature of the OpTC dataset there are many 
options for hypergraph constructions. Topological 
holes that arise from different choices of vertices and 
hyperedges could lead to the discovery of distinct 
but equally significant behaviors. For this investi-
gation we focus on hypergraphs where the vertices 
represent (source IP, host) pairs (as these identify 
machines) and the hyperedges represent (desti-
nation IP, destination port) pairs to model the way 
that machines interact with other systems on the 
network (here, and for the remainder of the article, 
we abbreviate “IP address” to “IP”). We restrict each 
hypergraph to a 10-minute time window of data. As 
a reminder, this means that a vertex is in a hyper-
edge if there is network flow log with that (source IP, 
host, destination IP, destination port) tuple during 
the time window represented by the hypergraph. To 
simplify exposition, we will refer to the vertices as 
“machines” rather than their (source IP, host) pair. 
We will see that significant aspects of the red team 
activity, including communication with the com-
mand and control (C2) server and lateral movement, 
manifest as nontrivial homology of this hypergraph’s 
nesting object.

Adversarial behavior as holes
Each of the three days of red team activity in the 
OpTC data had a different APT attack campaign 
involving different hosts and users and so can be 
studied independently; here, we focus on the sec-
ond day. At a high level, the second day represents 
a custom PowerShell Empire scenario. PowerShell 
Empire is a toolkit designed to streamline the phases 
of an APT attack following initial infiltration. It 
enables attackers to escalate privileges and gather 
intelligence, while evading detection. For example, 
by using PowerShell Empire an attacker can run 
scripts and modules in memory to stay more easily 
hidden. Specifically, it provides C2 capabilities that 

facilitate communication between the attacker and 
the compromised hosts by generating a listener that 
is protocol based (often HTTP, HTTPS, or DNS), so the 
communication looks like normal network traffic.

At the beginning of the second day of the red 
team activity, the users bantonio and rsantilli were 
compromised when they opened malicious attach-
ments from phishing emails on their workstations. 
As soon as they were compromised, bantonio’s and 
rsantilli’s machines began to communicate regularly 
with the two C2 servers, whose IPs we will refer to 
as C2A and C2B. In the logs, this means that there 
are records containing bantonio’s machine, with the 
destination IP C2A using the port for HTTPS traf-
fic. Similarly, there are frequent records containing 
rsantilli’s machine, with the destination IP C2B using 
the HTTP port. In the hypergraphs, this manifests as 
a hyperedge labeled (C2A, HTTPS) containing a single 
vertex corresponding to bantonio’s machine, and a 
(C2B, HTTP) hyperedge containing a single vertex 
corresponding to rsantilli’s machine. The former 
hyperedge appears in all hypergraphs overlapping 
with the time where bantonio’s machine was active, 
10:36 until 15:28.d The latter hyperedge appears in 
all hypergraphs overlapping with the time interval 
10:40 to 13:25, when rsantilli’s machine was active. 
Later in the afternoon, across different time windows, 
the single-vertex (C2B, HTTP) hyperedge instead 
contains vertices corresponding to other machines, 
consistent with the lateral movement documented in 
the diary of red team activity.

These singleton hyperedges that correspond to the 
C2 communications do not, by themselves, create any 
topological holes in the nesting object. More hyper-
edges are needed to tie those behaviors together. In 
addition to the communications with C2A and C2B, 
rsantilli’s and bantonio’s machines also communi-
cated with the same domain controller (DC)e across 
two different channels of communication (HTTP 
and HTTPS) shortly after they were compromised. 
Consequently, the large, complex hypergraph repre-
senting this time interval (figure 6, left) contains the 
motif shown in figure 6 (center). The nesting object 
of this motif is a cycle of length 4 shown in figure 6 
(right), which is very similar to the bottom example 
in figure 5. This example illustrates a one-dimen-
sional hole in the nesting object whose correspond-
ing motif contains hyperedges corresponding to 
adversary behavior.
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FIGURE 6. On the left is the full hypergraph corresponding to one 10-minute time window whose nesting object has a single one-di-
mensional hole. The motif representing that hole is shown in the center (hyperedges are also highlighted in the full hypergraph), and 
the nesting object is shown right. 

Interestingly, more than half of the motifs we 
found in hypergraphs within the time period of 
malicious activity had this motif of two single-vertex 
hyperedges in the intersection of two large hyper-
edges (38 out of 64). Figure 7 shows two more motifs 
(that created holes in the nesting complexes of hyper-
graphs representing 11:00-11:10 and 13:45-13:55, 
respectively) that, at first glance, appear identical to 
the one in figure 6, but there are some subtle differ-
ences in what the hyperedges represent. In the left 
motif, the single-vertex hyperedges again contain ver-
tices representing bantonio’s and rsantilli’s machines, 
and the blue and orange hyperedges show that these 
machines were communicating with a common DC, 
but the red hyperedge containing bantonio’s machine 
represents not one destination IP and port hyper-
edge but 335 of them. Close inspection of the logs 
shows that these hyperedges represent network flow 

records that are a downstream effect of the attack-
er’s attempt to elevate the permission level of their 
account on bantonio’s machine using PowerShell 
Empire. The motif on the right of figure 7 represents 
the attacker moving to different hosts using remote 
desktop sessions. Specifically, the red hyperedge 
represents when the attacker used a remote desktop 
session to move to host 974, and the green hyperedge 
represents when the attacker moved from host 974 
to host 005 a few minutes later. These differences 
illustrate that this common nesting object structure is 
not just representing one adversary tactic; rather, this 
structure is consistent with the way that those behav-
iors interconnect, not with the behaviors themselves.

Even when the motifs do not have this structure of 
two single-vertex hyperedges in the intersection of 
two large hyperedges, they still often demonstrated 

FIGURE 7. These two additional sub-hypergraphs of 10-minute windows have cycles in their nesting complexes. The structure is the 
same as in figure 6 but the behaviors that the hyperedges represent are slightly different. 

FEATURE
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connections to adversary behavior. For example, 
figure 8 shows a motif that has the same hyperedge 
containment relationships as the middle hyper-
graph in figure 5 and, therefore, also has a cycle of 
length 6 as its nesting object. The hyperedges in the 
motif represent bantonio’s and rsantilli’s machines 
talking to their C2 servers (the red hyperedges and 
green hyperedges, respectively), along with a benign 
remote desktop session from another machine (the 
brown hyperedge) and communication with DCs (the 
three large hyperedges). The commonalities between 
this and the examples in figures 7 and 8 illustrate the 
need for flexibility of motifs and topological signa-
tures, not just in theory but when working with real 
data. If we had just been searching for motifs that 
looked exactly like the examples in figures 7 and 8, 
we would have missed this.

FIGURE 8. This sub-hypergraph of a 10-minute window (left) 
was identified by our algorithm to have a cycle in its nest-
ing object (right). This is a 6-cycle as opposed to a 4-cycle in 
figures 7 and 8 but was found as a result of our search for 
one-dimensional holes.

Common interpretations of motifs
In traditional cyber research, signature-based meth-
ods search for patterns that match known adversary 
tactics, techniques, and procedures and raise an 
alert when a match is found. In contrast, our frame-
work defining topological signatures is designed to 
discover more flexible patterns that occur in high-
er dimensional structures of cyber data, and what 
those patterns mean. But also of great value are 
methods in exploratory data analysis (EDA), which 
identify significant patterns from the bottom up. In 
this exposition we built our examples to clarify the 
connection to the ground truth adversary behavior. 
But in practice we made these discoveries through 
EDA by applying our topology software [36] to the 

full hypergraph from each time window to detect any 
instances of homology in its nesting object. We did 
not know what kinds of behaviors the motifs it found 
would represent; by inspecting which machines and 
(destination IP, destination port) pairs the vertices 
and edges represented, we discovered that many of 
the motifs were linked to the C2 communication from 
compromised machines. While not every motif could 
be linked to malicious activity (although many could, 
discussed below), a key finding of our work is that 
most of the motifs were interpretable, in that their 
hyperedges could be inspected and understood as 
linked behaviors. Moreover, there were commonali-
ties in the interpretations.

This discovery is summarized in figure 9, which 
gives a timeline showing which elements of the red 
team’s activity commonly show up across the mo-
tifs. The portion of the timeline where the red team 
was active is highlighted in red, and the gray cells 
indicate time windows for which the nesting object 
of the hypergraph had holes. Note that not all time 
windows had holes. If the hypergraph did have at 
least one hole, we show whether any of their corre-
sponding motifs had features we have discussed. The 
appearance of bantonio’s and rsantilli’s machines in 
single-vertex hyperedges are indicated with red and 
blue dots, respectively; a green dot indicates when 
the single-vertex hyperedge contained the adminis-
trator on host 974; a yellow dot indicates when the 
single-vertex hyperedge represented a remote desk-
top protocol (RDP) session (benign or malicious); 
finally, we indicate when at least one of the large hy-
peredges of a motif represented communication with 
a DC with an orange outline. The last two characteris-
tics are not alone indicative of malicious activity; for 
example, sometimes an RDP session is initiated by 
an adversary, but other times it is benign. However, 
we included these characteristics in the figure to 
emphasize that even when the motif was not linked 
to malicious activity, it was still interpretable most 
of the time. In fact, there are only two time windows 
that have a hole but none of these annotations.

It is remarkable that application of our frame-
work—building a hypergraph, creating the nesting 
object, and computing the homology—discovers 
behavioral interactions joined together into similar 
patterns that we can interpret, even though there are 
differences in the finer details of the activity.
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FIGURE 9. This annotated timeline displays our findings. We highlight (gray) which 10-minute windows have one-dimensional holes in 
their nesting objects. We additionally indicate when there is a one-dimensional hole in a window that contains elements of adversary 
activity or DC communications. 

Evaluating holes as cyber alerts
Having established the success of our method at dis-
covering and interpreting patterns, we look toward 
the challenge of turning topological signature iden-
tification into a cyber alert specifically designed to 
capture behavior that aligns with known adversary 
tactics. Although future work is needed to achieve 
that goal, in order to identify next steps we describe 
and study false positives and false negatives as they 
present in our current analysis.

False positives

If critical components of a motif (e.g., the single-ver-
tex hyperedges included in larger hyperedges) could 
be linked to malicious behavior via process ID in the 
ground truth, we consider the motif to be malicious, 
a true positive. Of the 64 motifs in 31 time windows, 
47 motifs (73.4 percent) were malicious. These 47 
motifs occurred in 24 of the time windows, and when 
multiple motifs occurred in one time window, they 
were often very similar (for example, differing by a 
single hyperedge). The remainder of the motifs are 
false positives, but 13 of them were found to be relat-
ed to benign RDP sessions. This leaves only 4 motifs 
(6.25 percent) that were not interpretable.

Another way we could quantify false positives 
is by counting motifs in hypergraphs constructed 
over a benign time period in the data with compa-
rable levels of activity to the times of compromise. 

Unfortunately, the heterogeneity of the OpTC data 
makes this difficult. To approximate a benign time 
period, we used the same data but eliminated all 
network flow logs collected from compromised hosts 
before recomputing the homology. When we did this, 
we saw the number of vertices and hyperedges did 
not change much (figure 10, left), but the average 
number of holes per time window decreased from 1.0 
to 0.43, and the majority of time windows had no ho-
mology (53 out of 64 had no homology, compared to 
33 out of 64 with all hosts), which is shown in figure 
10 (page 14, right). It may not seem surprising that 
the number of holes is smaller after removing some 
vertices and hyperedges. But notice that in figures 
7, 8, and 9, there are many vertices (machines) that 
we could remove from the motifs without changing 
the fact that there is a one-dimensional hole in the 
nesting object. In these cases, it is the compromised 
machines (vertices) and the communications re-
sulting from that compromise (hyperedges) that are 
crucial to the existence of the holes. In other words, 
it is which vertices and hyperedges we removed that 
is important.

False negatives

Our analysis of false negatives is more nuanced 
because of the choices built into our framework, 
namely the choice of hypergraph construction. To 
mirror the definition of a false positive, we could 
consider any adversary action that was not part of a 
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motif as a false negative. However, there are a variety 
of different behaviors during an APT attack, some of 
which may primarily show up in host logs rather than 
network flow logs. The variety of adversary tactics 
mean that there will not likely be a single hypergraph 
construction that detects all malicious activity. While 
holes in the nesting object of the hypergraph con-
struction we focused on seem to consistently identify 
similar patterns of behavior, more work is needed to 
discover hypergraph constructions that can be used 
to detect other adversarial behaviors in this dataset 
and others.

Additionally, we point out that when the adversary 
was active, the single-vertex (C2A, HTTPS) and (C2B, 
HTTP) hyperedges were present in each hypergraph. 
But in some time windows these hyperedges are not 
part of a motif giving rise to a hole. This is because 
our framework is designed to detect the linkage of 
behaviors in interesting ways, rather than single 
behaviors. Once adversary behavior is discovered in 
one time period as part of an instance of a topological 
signature, the individual components of the signature 
can be used to seed analyst queries for other instanc-
es of those behaviors.

 
FIGURE 10. The number of vertices and hyperedges in hypergraphs with (source IP, host) vertices and (destination IP, destination port) 
hyperedges constructed from day 2 of the OpTC data are displayed in the scatter plot on the left, and the number of one-dimension-
al holes in these hypergraphs is displayed in the scatter plot on the right. To quantify homology unrelated to adversarial activity, we 
constructed hypergraphs both using data from all the hosts and a subset of the data that excludes the compromised hosts. Note that 
malicious activity occurs from 10:28 to 15:42. 

Conclusion
The problem of developing new cyber tools that en-
able effective attack detection in a way that keeps up 

with adversary developments is challenging, in part 
because of the unknown complexity within the data. 
The framework we introduce here, identifying behav-
ior linkage patterns through topological signatures, 
answers the challenge of stepping out of Flatland into 
the unknown dimension of Cyberland and points to 
a wide area of potential research. Our exploration 
of the OpTC data provides one example of its utility 
to make sense of this complex cyber data. Unlike 
traditional signature-based cyber tools, our methods 
did not set out to define patterns based on known 
adversary techniques, rather we modeled the com-
plexity using hypergraphs and looked for structure 
via homology. It was very surprising and exciting that 
homology of the nesting objects took these hyper-
graphs with around 750 vertices and 100 hyperedges 
each and found small hypergraph motifs that were 
typically interpretable and often included adversary 
activity. There is still a need for more theory to un-
derstand the homology of topological translations of 
hypergraphs, interpretation to flesh out how topolog-
ical signatures relate to user and adversary behav-
iors, and a bridge to be built between theoreticians 
and cyber analysts to ensure both sides understand 
and can help shape the perspective of the other. Our 
team will continue to explore these directions and we 
look forward to collaborations and partnerships as 
we continue our journey through Cyberland.  
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