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ABSTRACT
Wepropose a flexible framework for clustering hypergraph-structured

data based on recently proposed random walks utilizing edge-

dependent vertex weights. When incorporating edge-dependent

vertex weights (EDVW), a weight is associated with each vertex-

hyperedge pair, yielding a weighted incidence matrix of the hy-

pergraph. Such weightings have been utilized in term-document

representations of text data sets. We explain how random walks

with EDVW serve to construct different hypergraph Laplacian ma-

trices, and then develop a suite of clustering methods that use these

incidence matrices and Laplacians for hypergraph clustering. Us-

ing several data sets from real-life applications, we compare the

performance of these clustering algorithms experimentally against

a variety of existing hypergraph clustering methods. We show that

the proposed methods produce high-quality clusters and conclude

by highlighting avenues for future work.

CCS CONCEPTS
• Information Systems; • Information Systems Applications;
• Data mining; • Clustering;

KEYWORDS
hypergraphs; randomwalks; clustering; Laplacian; Symmetric NMF;

Joint NMF; edge-dependent vertex weights

ACM Reference Format:
Koby Hayashi, Sinan G. Aksoy, Cheong Hee Park, and Haesun Park. 2020.

Hypergraph Random Walks, Laplacians, and Clustering. In The 29th ACM
International Conference on Information and Knowledge Management (CIKM
’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3340531.3412034

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412034

1 INTRODUCTION
While graphs serve as a popular tool for modeling a myriad of data

analytics tasks, graphs are limited to representing pairwise rela-

tionships between objects. However, data sets frequently contain

multi-way relationships. For instance, in a term-document matrix

that is frequently used to represent text data, multiple terms are

related to each other from their appearance in the same document.

Multi-way relationships also abound in many contexts, such as

when multiple people author a paper, groups of proteins interact,

or mutations in multiple genes are associated with a disease. These

multi-way relationships are different from multiple binary rela-

tionships. More generally, k-way relationships occur whenever

information naturally presents as set-valued, bipartite or tabular.

In such cases, hypergraphs – generalizations of graphs in which

edges may link any number of vertices – are more appropriate.

While hypergraph-structured data is widely prevalent, utilizing

a hypergraph model to perform analytics tasks is often challeng-

ing. First and foremost, a primary difficulty concerns how to best

represent a hypergraph for key analytics tasks such as clustering.

A number of fundamental graph representations such as the adja-

cency matrix or Laplacian matrix, have no obvious or canonical

analog in the hypergraph setting. In particular, developing such

representations is especially challenging for non-uniform hyper-

graphs, which appear most often in real applications. Furthermore,

work by Agarwal [2] has shown that many hypergraph Laplacian

matrices are in fact directly related to various graph expansions of a

hypergraph, and in this sense, do not fully capture the higher-order

relationships modeled by the hypergraph. Secondly, another diffi-

culty concerns devising analytic methods that can effectively utilize

these hypergraph representations. Indeed, hypergraph representa-

tions such as tensors for uniform hypergraphs, where the orders of

all hyperedges are same, while faithful in capturing higher-order

relationships, may be limited to special cases and difficult or pro-

hibitively expensive to adopt and analyze in practice, due to their

large dimensionality or otherwise complicated properties.

One promising approach for addressing these challenges is rooted

in the study of random walks on hypergraphs. Much of the work on

random walks on hypergraphs has limited applicability to real data

because it only considers uniform hypergraphs [11, 25, 26]. Other

work has considered non-uniform hypergraph random walks, but

analyzes simple random walks, in which vertices are chosen uni-

formly at random from a hyperedge. However, these random walks

have been shown [8] to be equivalent to a random walk on the
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graph clique expansion of the hypergraph. Recent work by Chitra

and Raphael [8] has shown incorporating so-called edge-dependent

vertex weights (EDVW) into the random walk is a necessary condi-

tion to circumvent this equivalence, therefore to better capture the

higher-order properties of hypergraphs. Such vertex weightings,

associated with each vertex-hyperedge pair, have appeared in a

number of different contexts, such as in term-document matrix

represented via tf-idf (term frequency and inverse document fre-

quency), weighting based on the significance in the author order in

research paper data, or in general, whenever incidence structures

have weighted (rather than binary) cells.

In this work, we use EDVW random walks to develop a diverse

and flexible framework for clustering hypergraph data. We explain

how to construct several different hypergraph representations in

incidence matrices and Laplacians based on EDVW random walks,

as well as how one can apply a number of different clustering al-

gorithms to these representations. In addition, we experimentally

compare the performance of these EDVW random walk-based clus-

tering approaches to existing hypergraph clustering approaches.

We organize our work as follows: in Section 2, we provide the

necessary preliminaries and briefly review random walks on hy-

pergraphs. In Section 3, we explain how the probability transition

matrix of EDVW random walks may be utilized to construct a

number of different hypergraph Laplacians, and survey appropriate

possibilities from the literature. In Section 4, we define clustering

methodologies that may be used in conjunction with the aforemen-

tioned hypergraph representations. In Section 5, we review other

approaches from the literature, consisting of both different hyper-

graph representations as well as different clustering methodologies.

In Section 6 we compare these approaches to ours experimentally:

we describe our test datasets, experimental setup, clustering per-

formance evaluation metrics, and report our findings.

2 HYPERGRAPHS AND RANDOMWALKS
2.1 Preliminaries
Hypergraphs are generalizations of graphs in which edges can

connect any number of vertices. More formally, a hypergraph H =
(V ,E) is a set of vertices V = {v1, . . . ,vn } and a family of edges

E = (e1, . . . , em ) where ei ⊆ V for i = 1, . . . ,m. A graph is a

uniform hypergraph of edge order 2, i.e., every edge e in a graph

has |e | = 2. Throughout, we assume the hypergraph has no isolated

vertices, i.e.

⋃
e ∈E e = V , and no empty edges. A hypergraphmay be

represented by its (unweighted) incidence matrix X ∈ {0, 1} |E |× |V | ,
where

Xev =



1 if vertex v belongs to hyperedge e ,

0 otherwise.
(1)

(Note that this incidence matrix is sometimes transposed to denote

vertex by hyperedge relationships. However, we will use the above

notation to make it consistent with the notations in the closely

related papers.) The dual of a hypergraph, denoted H∗, is the hy-
pergraph associated with XT

.

In practice, it is common that hypergraphs are transformed to

graphs. One such popular transformation replaces each hyperedge

with a clique, and is thus called the clique expansion. More precisely,

the clique expansion of a hypergraph H = (V ,E) is a graph on

the same vertex set, with edge set {{u,v} |u,v ∈ e for some e ∈ E}.
The clique expansion has weighted adjacency matrix given by XTX,

where the (i, j ) entry denotes the number of shared hyperedges to

which vertices i and j belong.
Although such transformations are convenient in that they fa-

cilitate the application of graph-theoretic methods, they also have

several drawbacks. First, the clique expansion is lossy in the sense

that non-isomorphic hypergraphs may have identical clique ex-

pansions. In fact, recent work by Kirkland [19] confirms this infor-

mation loss persists even when hypergraph duality is considered:

that is, the pair of matrices, XTX and XXT
, corresponding to the

weighted clique expansion of a hypergraph and its dual, still does

not uniquely identify a hypergraph up to isomorphism. This in-

formation loss is a primary reason why clique expansion based

hypergraph representations are sometimes criticized.

In addition to information loss, another drawback of clique ex-

pansions is their density. In particular, since each hyperedge of size

k contributes

(k
2

)
edges in the clique expansion, a hypergraph with

large maximum edge size will have a clique expansion that may be

prohibitively dense to analyze or even hold in computer memory.

Nonetheless, as will soon be clear, clique expansions are a useful

reference point for understanding hypergraph random walks, as

well their associated Laplacians.

2.2 Random walks
A random walk on a hypergraph H = (V ,E) is a discrete-time

Markov chain X1,X2, . . . , on state space V defined by given tran-

sition probabilities. Letting ω : E → R+ denote any function that

assigns positive weights to the hyperedges of a hypergraph, a stan-

dard formulation for a hypergraph random walk may be given as

follows: if at time t , the current state is Xt = vt , then

(1) Select a hyperedge e ∋ vt with probability proportional to

ω (e ).
(2) Select a vertex v ∈ e uniformly at random, and set Xt+1 = v .

In this random walk, a vertex is chosen uniformly at random

from a hyperedge, and we refer to it as a simple random walk. We

note that a number of hypergraph random walks studied in the

literature follow this form; see [4, 11, 33].

For the special case of graphs, describing the random walk as a

two-step process is generally redundant: since an edge in a graph

can only connect two vertices, the selection of an incident edge

uniquely determines the next state in the chain. For more on graph

random walks, see [3]. In contrast, a hyperedge may connect any

number of vertices, any of which could be chosen for the next

state. Accordingly, the second step above is the key for generalizing

random walks on graphs to hypergraphs. Focusing on this step,

Chitra and Raphael [8] suggest choosing a vertex from a hyperedge

using vertex weightings specific to that hyperedge. More formally,

for e ∈ E, letting γe : e → R+ denote the weighting function for a

hyperedge e , we have if Xt = vt , then

(1) Select a hyperedge e ∋ vt with probability proportional to

ω (e ).
(2) Select a vertex v ∈ e with probability proportional to γe (v ),

and set Xt+1 = v .
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e1 e2

v1 7 3
v2 1 2
v3 0 9

3
5

!(e1) = 1

!(e2) = 5

From these matrices, we observe:

• H has 1-diameter 3, and average 1-distance is 1.5.

• H is 1-connected, not 2-connected, and (trivially) 3-connected (by
virtue of only having one edge of size 3).

We also observe:

• There are no subset s-paths, for any s, between abc and cd. So dS
1 (abc, cd) =

dS
2 (abc, cd) = 1 and H is not 1 or 2-subset connected (and conse-

quently, not 1 or 2-Hasse connected either).

• The toplexes of H are abc, cd, ad. Observe,

– dT
1 (abc, cd) = 1 and dT

2 (abc, cd) = 1,

– dT
1 (abc, ad) = 1 and dT

2 (abc, ad) = 1,

– dT
1 (ad, cd) = 1 and dT

2 (ad, cd) = 1,

hence, H is 1-toplex connected with 1-toplex diameter 1, and not 2-
toplex connected. This holds, not only for H, but for any hypergraph
in B(H).
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represent the s-connected components of the hypergraph, and the 1-line graph is simply the line graph
from Definition 4. In Table 1, we give an example of two hypergraphs and their associated s-line graphs.
Observe that both hypergraphs have identical 1-line graphs. Nonetheless, comparing their s-line graphs
for s = 2, 3, 4 suggests di↵erences otherwise lost when solely considering the (usual) line graph.

Although more general, s-line graphs are still subject to the same limitations underlying (the usual)
hypergraph line graphs, and do not uniquely identify a hypergraph, up to isomorphism. Nevertheless,
s-line graphs can be utilized to determine a number of s-walk properties, including s-distance, which
we explore in the next section. It is worth stressing, however, that the study of high-order s-walks in
hypergraphs is not limited to studying s-line graphs. As we will see in Section 4.4, s-line graphs cannot
be used to distinguish between finer classes of s-walks, such as s-meanders and s-paths, and consequently
cannot be used to compute s-clustering coe�cients, for example.

Application to Data
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Figure 1: A hypergraph with EDVW and hyperedge weights
(left) and the representative digraph of the corresponding
EDVW random walk (right).

The collection of functions {γe }e ∈E is called an edge-independent
vertex weighting (EIVW) of H if for every vertex, γe (v ) = γe ′ (v )
for all pairs of hyperedges e, e ′ containing v [8]. Otherwise, the

vertex-weighting is edge-dependent. Edge-dependent vertex weights
(EDVW) may also be represented by a weighted incidence matrix

R ∈ R |E |× |V |
≥0

,

Rev =



γe (v ) if vertex v belongs to hyperedge e ,

0 otherwise.
(2)

Stated equivalently, the edge-dependent condition is that there is

a column in R in which the nonzero entries are not all equal. As

we will see in Section 6, real data can be naturally represented

with EDVW. A good example is the term-document matrix for text

data sets, where term frequency-inverse document frequency (tf-

idf) matrices are natural analogies for EDVW, which we view as

a weighted hypergraph incidence matrix (more precisely, as RT

with terms as vertices and documents as hyperedges). EDVW also

naturally arise for other types of data, such as author-position for

author-paper networks, and association scores for gene-disease

data. In general, whenever vertex-weights are edge-dependent, we

will call the random walk described above an EDVW random walk.
In a simple randomwalk on a hypergraphwithout vertex weights

(or with trivial edge-independent vertex weights), a random walk

is always equivalent 1 to a random walk on the clique expansion

graph of the hypergraph, under some edge weighting of the clique

expansion as shown in [8]. They show EDVW are necessary for a

random walk on a hypergraph not to be characterized simply as a

randomwalk on the clique expansion graph. In fact, EDVW random

walks may be non-reversible2 Markov chains, which implies that

they cannot be represented as random walks on any undirected

graph. In summary, one potential avenue for capturing higher-order

properties of hypergraphs is through EDVW random walks [8].

Next, we describe how to utilize EDVW random walks to construct

various Laplacian matrices for hypergraph clustering.

3 FROM RANDOMWALKS TO HYPERGRAPH
LAPLACIANS

In graph theory, random walks serve as an implicit or explicit

foundation for constructing a number of Laplacian matrices. For

instance, when P is the transition probability matrix of the random

1
Two random walks on the same state space are equivalent if they have the same

transition probability between each pair of states.

2
A random walk with probability transition matrix P and stationary distribution π is

reversible if π iPi j = π jPji for all pairs of states i, j .

walk, the random walk Laplacian is I−P. The normalized Laplacian

matrix popularized by Chung [9] also has eigenvalues that are re-

lated to those of P by elementary shifts and scalings. Consequently,

it is unsurprising the study of Laplacians is deeply intertwined with

that of random walks; for more, see the monograph [9].

Here, we will explain how one may similarly construct various

Laplacian matrices for hypergraphs using the transition probability

matrix P of an EDVW random walk [8]. To formally define the

transition probabilitymatrix, letR denote the |E |×|V | vertex-weight
matrix, with Rev = γe (v ) if v ∈ e and 0 otherwise. Note that RT

is a weighted incidence matrix where the weight of each vertex is

dependent on the hyperedge it is incident to. Similarly, let W denote

the |V | × |E | hyperedge-weight matrix, with Wve = ω (e ) if v ∈ e
and 0 otherwise. Finally, let DV = diag(We) and DE = diag(Re)
denote the diagonal vertex degree and hyperedge weight matrices,

where e denotes the vector of an appropriate dimension with all its

components ones. The transition probability matrix for the EDVW

random walk is given by

P = D−1V WD−1E R (3)

Aswe explain next, this matrix will be used explicitly to construct

a number of different hypergraph Laplacians via its interpretation

as an edge-weighted directed graph.

3.1 Representative digraph
Recall the transition matrix P completely defines the random walk

on a hypergraph H . One may also represent P, and hence the ran-

dom walk, as a directed graph (digraph) on vertex set V and edge

set E = {(i, j ) | Pi j > 0}, where the edge weight of (i, j ) is simply

the transition probability Pi j . We call this the representative digraph
of the random walk. Figure 1 illustrates an example of a hypergraph

with hyperedge weights, EDVW weights presented as RT
, and the

representative digraph of the associated random walk.

When derived from hypergraph random walks, representative

digraphs have several notable properties. First, they do not con-

tain any source or sink vertices since Pi j is nonzero if and only

if Pji is nonzero as well. Furthermore, the representative digraph

of a hypergraph random walk is also strongly connected if and

only if the hypergraph is connected. Consequently, just as any

hypergraph may be written as the vertex and hyperedge-disjoint

union of connected hypergraphs, its representative digraph may

also be represented as the vertex and edge-disjoint union of strongly

connected components – a property that doesn’t necessarily hold

for directed graphs in general. This means one can apply our pro-

posed clustering methodologies to cluster any hypergraph on a

per connected component basis, analogous to how graph cluster-

ing methodologies are sometimes performed separately on each

connected component of the graph. Lastly, since representative

digraphs always contains loop edges of the form (i, i ), this guar-
antees hypergraph random walks are always aperiodic. Therefore,
a random walk on any connected hypergraph is ergodic, which
guarantees convergence to the stationary distribution.

3.2 Laplacians based on EDVW random walks
Via the representative digraph, Laplacians for edge-weighted di-

rected graphs naturally serve to construct random-walk based
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Laplacians for hypergraphs. A number of different directed graph

Laplacians have been proposed, and they could be utilized in this

context. Perhaps most natural for our purposes are the combina-

torial and normalized digraph Laplacians matrices proposed by

Chung [10]. Indeed, we note Chitra and Raphael adopt Chung’s

combinatorial digraph Laplacian as their hypergraph Laplacian in

[8]. To define these matrices, recall the stationary distribution π of

a random walk is the all-positive dominant left eigenvector of the

transition probability matrix P,

πTP = πT, (4)

scaled to have unit 1-norm. By the Perron Frobenius theorem, the

stationary distribution π exists if the matrix P is irreducible, which,

in turn, occurs precisely when the representative digraph is strongly

connected. Letting Φ = diag(π ), Chung defines the directed combi-

natorial Laplacian L and normalized Laplacian L as follows:

L = Φ −
ΦP + PTΦ

2

(5)

L = Φ−
1

2 LΦ−
1

2 = I −
Φ

1

2 PΦ−
1

2 + Φ−
1

2 PTΦ
1

2

2

(6)

Clearly, both of the above matrices are symmetric. When applied

to graphs, L and L above are equal to the combinatorial and nor-

malized graph Laplacians, respectively.

Given their explicit basis in random walks and applicability to

any irreducible transition matrix P, Chung’s Laplacians are nat-

ural choices for deriving hypergraph Laplacians based in EDVW

random walks. Nonetheless, there are other directed Laplacians

proposed and studied in the literature that could serve, some of

which are asymmetric. Bauer [5] studies an asymmetric digraph

Laplacian that, for digraphs without source vertices, is defined as

I − P. Li and Zhang [24] study the asymmetric digraph Laplacian

Γ = Φ1/2 (I − P) Φ−1/2, which is related to Chung’s normalized

LaplacianL above byL = Γ+ΓT
2

. Like Chung’s normalized digraph

Laplacian L, Γ is also a generalization of the normalized graph

Laplacian, which it reduces to in the graph case.

Lastly, one final class of digraph matrices and Laplacians, which

have recently received attention in the literature, utilize complex
values. Mohar and Guo [17] propose a Hermitian digraph adjacency

matrix which encodes adjacency using the imaginary unit i , or, as
proposed more recently [28], the sixth root of unity. While such ma-

trices have varied algebraic properties that capture combinatorial

properties of the directed graph, their applicability and effectiveness

as representations for clustering has yet to be established.

One exception, however, is recent work by Cucuringu [12]. Uti-

lizing a variant of Mohar and Guo’s matrix, Cucuringu proposes a

simple digraph spectral clustering algorithm and justifies its effec-

tiveness by analyzing its performance in recovering planted clusters

from the Directed Stochastic Block Model, a generalization of the

classical SBM [18]. Adapted to our setting, Cucuringu’s matrix is

B = i ·
(
P − PT

)
, (7)

where i is the unit imaginary number. We note B is both Hermitian

and skew-symmetric. This skew-symmetrization of the transition

matrix may be thought of as constructing an oriented digraph (i.e.

a digraph without reciprocal edges) from the representative di-

graph, in which the edge weight between i and j is the difference in

their probability transitions, and directionality is encoded by sign.

For clustering, Cucuringu suggests normalizing this matrix by the

diagonal matrix with Sii =
∑
j |Bi j |, i.e., forming S−1B.

3.3 Relationship with the clique expansion
Lastly we clarify how, when applied to the representative digraph of

the EDVWhypergraph randomwalk, the above matrices are related

to Laplacians of the hypergraph’s clique expansion graph. This

question was considered by Agarwal [2], who showed a number of

other hypergraph Laplacians are equivalent to the graph Laplacians

of the clique expansion.

As we’ve noted, an EDVW hypergraph random walk may be

non-reversible, in which case there is no graph (including the clique

expansion) with probability transitionmatrix equal to that of the hy-

pergraph, as all graph random walks are necessarily reversible [3].

Consequently, it immediately follows that the hypergraph Lapla-

cian matrix I − P cannot be characterized as I − Q, where Q is the

probability transition matrix of a random walk on a graph. Further-

more, we prove an analogous statement holds for Li and Zhang’s

digraph Laplacian matrix, Φ1/2 (I − P) Φ−1/2.

Proposition 3.1. Let P denote the probability transition matrix
of an EDVW random walk on a connected hypergraph. If the Markov
chain given by P is non-reversible, there does not exist any edge-
weighted graph G such that

Φ1/2 (I − P) Φ−1/2 = Π1/2 (I − Q) Π−1/2, (8)

whereQ denotes the probability transitionmatrix of a randomwalk on
G , andΦ,Π denote diagonal matrices with the stationary distributions
of P,Q, respectively, on the diagonal.

Proof. Assume such a graph exists. Then

Pi j =
(√

ϕ jπi/
√
ϕiπj

)
Qi j , (9)

where ϕi = Φii and πi = Πii . Since the random walk given by

P is ergodic, Eqn. (9) implies random walk given by Q is ergodic

as well. Furthermore, since all random walks on graphs are time

reversible, the random walk given by Q is time reversible. Ergodic,

time-reversible random walks satisfy Kolmogorov’s criterion; ap-

plied to Q, Kolmogorov’s criterion states that for any set of vertices,

{v1, . . . ,vn }, we have
Qv1v2

Qv2v3

. . .Qvn−1vnQvnv1

= Qv1vnQvnvn−1 . . .Qv3v2

Qv2v1

.

Now,

Pv1v2
Pv2v3

. . . Pvnv1
= Qv1v2

Qv2v3

. . .Qvnv1

= Qv1vnQvnvn−1 . . .Qv2v1

= Pv1vnPvnvn−1 . . . Pv2v1

due to Eqn. (9), which implies P is the transition matrix of a time-

reversible Markov chain, a contradiction. □

The above result means the EDVW random walked based hy-

pergraph Laplacians I − P and Φ1/2 (I − P) Φ−1/2 cannot be charac-
terized as Laplacians of graphs, and hence are not subject to Agar-

wal’s criticism of hypergraph Laplacians in [2]. However, Chung’s

digraph Laplacians symmetrize the probability transition matrix

and, as has been previously noted in [16, 24], can be understood

as Laplacians of weighted undirected graphs. In our context, this

observation may be stated more precisely as follows:
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Proposition 3.2. Let L and L denote the hypergraph Laplacians
obtained from applying Chung’s digraph Laplacians defined in Eqns
(5) and (6), to the representative digraph of a random walk on a
connected hypergraph H . The matrix

A =
ΦP + PTΦ

2

(10)

is the adjacency matrix of the clique expansion graph of H , under an
edge-weighting. Furthermore, the edge-weighted graph given by A
has combinatorial and normalized graph Laplacian matrices equal to
L and L, respectively.

Proof. To see A is the adjcency matrix of the clique expansion

graph of H , observe that, by definition of an EDVW random walk

on a hypergraph, Pi j (and hence Ai j ) is nonzero if and only if

vertices i, j ∈ e , for some edge e in the hypergraph H . This is

precisely the edge condition in the clique expansion definition. The

combinatorial and normalized Laplacians of A are the same as L and

L, respectively, since Ae = 1

2
(Φ(Pe)+PT (Φe)) = 1

2
(Φe+PTπ ) = π

and hence the weighted graph described by A has diagonal degree

matrix D = Φ. Substituting D and A into D−A and I−D−1/2AD−1/2

yields the result. □

In this sense, Agarwal’s criticism in [2] also applies to hyper-

graph Laplacians derived from Chung’s digraph Laplacians. How-

ever, as we will highlight further in the next section, Chung’s di-

graph Laplacian matrices still preserve key information about the

random walk important for clustering and hence serve as effective

representations for our approach.

Lastly, we note Proposition 3.2 also answers a question of Chitra

[8, Section 5.1] on whether there exist edge weights on the clique

expansion such that its combinatorial Laplacian is “close" to the hy-

pergraph Laplacian obtained from Chung’s digraph combinatorial

Laplacian. Indeed, the proposition shows there exists edge weights

such that equality holds. Nonetheless, it remains to be seen whether

a more explicit formula for these edge weights may be obtained

solely in terms of the hypergraph’s hyperedge and vertex weights,

rather than invoking the stationary distribution, as in Eqn. (10).

4 PROPOSED CLUSTERING METHODS
Given a hypergraph H = (V ,E) with EDVW, and a desired num-

ber of clusters k , our goal is to partition V into disjoint subsets

S1, . . . , Sk , such that a cluster quality objective function is opti-

mized. Recall that in graph clustering, one suchwell known function
is the normalized cut (Ncut), which measures the weight between

each cluster S to its complement Sc relative to the cluster “volume".

More precisely

Ncut(S1, . . . , Sk ) =
1

2

k∑
i=1

vol(∂Si )

vol(Si )
, (11)

where vol(Si ) =
∑
u ∈Si (Ae)u , vol(∂Si ) =

∑
u ∈Si ,v ∈Sci Auv and A

is the adjacency matrix of the graph. However, in our case we are

utilizing the representative digraph of the EDVW hypergraph ran-

dom walk (and its associated Laplacians) as our basis for clustering.

Thus, we require a notion of Ncut for directed graphs, which, in turn,

requires directed notions of vol(S ) and vol(∂S ). Chung proposed

Algorithm 1: Representative Digraph Clustering-Spec (RDC-

Spec)

Input: A connected hypergraph H = (V ,E) with hyperedge

weights and edge-dependent vertex weights, and

desired number of clusters k ≥ 2.

1 Construct P as in Eqn. (3).

2 Construct Φ = diag(π ) such that πTP = π and

∥π ∥1 = 1,π > 0

3 Construct T as in Eqn. (15).

4 Compute the k eigenvectors paired with the k largest

eigenvalues of T and collect them into the columns of the

matrix U ∈ R |V |×k .
5 Normalize the rows of U with respect to the L2 norm.

6 Cluster the rows of the matrix U using k-means.

Output: k vertex clusters

such digraph analogs of volume, which are based in the probability

transition matrix P and stationary distribution π :

vol(Si ) =
∑
u ∈Si

πu , (12)

vol(∂Si ) =
∑

u ∈Si ,v ∈Sci

πuPuv . (13)

As shown in [16], we note vol(∂S ) = vol(∂Sc ) and that the function
Fπ = πuPuv is an example of a circulation function, a general type

of flow on the directed graph (see [10] for more).

We also note these directed notions of volume yield an elegant

and intuitive random walk interpretation of Ncut, which was ob-

served in the graph case by Meila and Shi [27]. In particular, if we

let Pr(Sc |S ) denote the probability of transitioning to a vertex in

Sc given the current state is a vertex in S , then it is straightforward

to show Pr(Sc |S ) =
vol(∂S )
vol(S ) . By definition of Ncut, we thus have:

Ncut(S, Sc ) = Pr(Sc |S ) + Pr(S |Sc ). (14)

Now, returning our attention to Chung’s digraph Laplacian ma-

trices, recall Chung’s digraph Laplacians are equivalent to the graph

Laplacians associated with a particular edge-weighted graph de-

rived from the digraph – that is, the graph with edge-weighted ad-

jacency matrix defined in Eqn. (10). Further, Gleich showed vol(S )
and vol(∂S ) of this graph are equal to their directed analogs (defined
above) of the associated digraph [16, p. 7].

This means that any graph clustering algorithm which mini-

mizes graph Ncut will, when applied to Chung’s digraph Lapla-

cians, minimize the directed analog of Ncut obtained by using the

directed volume definitions in Eqns. (12) − (13) in the Ncut defi-

nition in Eqn. (11). We test two algorithms to obtain clusterings

on Chung’s Laplacian. The spectral method is motivated by Zhou

et al.’s [32] algorithm which heuristically minimizes the Ncut on

Chung’s Laplacian and another method proposed by Ng, Jordan,

and Weiss [29] which also heuristically minimizes the Ncut. Apply-

ing a similar algorithm to Chung’s normalized digraph Laplacian

yields our suggested hypergraph spectral clustering method, Algo-

rithm 1. Additionally, we propose using a Symmetric Non-negative

Matrix factorization based algorithm for graph clustering based on

the framework from Kuang et al. [20, 21].
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Algorithm 2: Representative Digraph Clustering-SymNMF

(RDC-Sym)

Input: A connected hypergraph H = (V ,E) with hyperedge

weights and edge-dependent vertex weights, and

desired number of clusters k ≥ 2.

1 Construct P as in Eqn. (3).

2 Construct Φ = diag(π ) such that πTP = π and

∥π ∥1 = 1,π > 0

3 Construct T as in Eqn. (15).

4 Compute a rank k Symmetric NMF of T and collect the factors

into the columns of the matrix U ∈ R |V |×k
≥0

.

5 Assign each row of U to the column index of its max element.

Use these as cluster assignments.

Output: k vertex clusters

When the hypergraph is disconnected, Algorithms 1 and 2 may

be applied per connected component. We also note this algorithm

utilizes the matrix T,

T = I −L =
Φ

1

2 PΦ−
1

2 + Φ−
1

2 PTΦ
1

2

2

(15)

which is slightly different from Chung’s digraph Laplacian, which

is L = I − T. This modification is made to ensure the input is non-

negative. This assumption is not necessary for spectral clustering,

but necessary for non-negative matrix factorizations.

Our framework can be applied to multi modal data analysis

frameworks that seek to utilize hypergraph information. For ex-

ample Joint-NMF (JNMF), as proposed by Du et al. [14], is able to

utilize multiple sources of information to perform clustering. This

is further discussed in Section 6.3.2.

Symmetric Non-negative Matrix Factorization (SymNMF) solves

min

F≥0
∥S − FFT∥2F (16)

where S is a symmetric, non-negative matrix and F ∈ R |V |×r
≥0

, r is
some positive integer which is usually set to the number of clus-

ters when clustering. It has been shown that SymNMF can achieve

state-of-art results on various graph clustering tasks such as im-

age segmentation [20, 21]. Additionally, Kuang et al. [21] show

SymNMF and Spectral clustering minimize the same objective func-

tion but with different constraints. While SymNMF aims to solve

Eqn. (16), spectral clustering aims to solve the same objective but

imposes that FTF = I instead of F ≥ 0. While it depends on the algo-

rithms utilized, SymNMF and Spectral Clustering have comparable

complexities of (very) roughly O ( |V |2k ) per iteration. SymNMF is

dominated by the formation of the normal equations which requires

the matrix products FT F and FT S, whereas Spectral Clustering is
dominated by the cost of computing a truncated spectral decom-

position of S. We adapt SymNMF clustering to our framework in

Algorithm 2.

Lastly, we conclude this section by acknowledging other ap-

proaches that may be taken to cluster hypergraphs via the represen-

tative digraph of an EDVW hypergraph random walk. In particular,

the aforementioned work by Cucuringu [12] takes a Stochastic

Block Model (SBM) approach towards clustering digraphs. The

SBMs are probabilistic models that generate random networks with

planted communities; for more on SBMs and clustering, see [1, 22].

Cucuringu shows that, under mild assumptions on the parameters

of the Directed Stochastic Block Model, the number of vertices

misclassified by their algorithm is well-bounded, with high prob-

ability. This is shown by applying particular tools from random

matrix theory, which critically rely upon both the Hermitian and

skew-symmetry properties of the matrix. The complex-values in

Cucuringu’s input representation serve the purpose of allowing

digraph edge-directionality to be encoded in a matrix with these

properties. For details interested readers may refer to [12]. Although

not explored further in this work, we note their algorithm may be

applied to any edge-weighted digraph, and thus could be applied

to the representative digraph of an EDVW hypergraph.

5 EXISTING HYPERGRAPH CLUSTERING
METHODS

We’ve outlined an EDVW random-walk based framework for clus-

tering hypergraphs that offers flexibility both in the choice of repre-

sentation, as well as clustering method. Now, we will survey other

clustering approaches that utilize different hypergraph representa-

tions or clustering methods than what we have proposed. Then, in

Section 6, we will compare our clustering framework against these

methods on text-document and other datasets. Before describing the

details, it is helpful to take a broader viewpoint of hypergraph clus-

tering approaches and briefly discuss how EDVW-based methods

fit within this literature.

Much of the recent work on hypergraph clustering is fundamen-

tally centered around the question of how hyperedges can be cut

or alternatively how a vertex contributes to a hyperedge. In the

context of the graph expansion-approaches, in which the afore-

mentioned clique expansion is studied in place of the hypergraph,

this question is answered by how the edges in the expansion graph

are assigned weights. These weights are usually uniform with re-

spect to a single hyperedge. Consequently, each vertex within a

hyperedge is treated equally; for example, Zhou’s Laplacian and

hypergraph clustering formulation [33] is one such example.

Instead of clustering based on how hyperedges are cut, an alter-

native approach is to consider how network motifs (certain small

subgraphs, such as a 3-clique) are cut. This approach was suggested

by Benson [6] and further explored in [23]. In the motif-based clus-

tering algorithms proposed in [6] no matter how a motif is cut

it incurs a constant penalty. Later, the authors of [23] discussed

the idea of inhomogeneous hypergraphs which can be thought of

as motif clustering where different cuts in a motif incur different

penalties. The cost of some of the different cuts are assumed to be

given a priori: for example, if a hyperedge contains vertices a,b, c,d ,
then a weight for the cost of separating a,b and c,d is given. This

information is then used to form each hyperedge into a clique that

preserves cut constraints, yielding a clique expansion style method.

EDVWhypergraphs seek to address the same problem but from a

different perspective. Instead of having a-priori penalties for edges

or relationships between vertices within a hyperedge, for each

hyperedge, EDVW give us data-driven values for how much each

vertex individually contributes to that hyperedge. This information

is then used to describe a random walk, which serves as the basis
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for deriving representations utilized by our proposed clustering

algorithms. Below, we survey other hypergraph clustering methods.

• Clique-expanded Hypergraph Clustering (CHC): Proposed

by Zhou in [33], this algorithm expands each hyperedge in a

given hypergraph into a clique and assigns a uniform weight

value to each edge formed. Spectral clustering is then run

on the resulting weighted graph which has the Laplacian

∆ = D−1/2V XTZD−1E XD−1/2V (17)

whereX ∈ {0, 1} |E |× |V | is the incidence matrix, Z ∈ R |E |× |E |+

is the diagonal matrix containing the weights of hyperedges,

DE = diag(Xe) andDV is a diagonalmatrixwhere the (i, i )th
entry is eTZxi and xi is the ith row of X.

• NMF for Text-Clustering (NMF) [30] solves the problem

min

(U,M)≥0
∥RT − UMT∥2F ,

U ∈ R |V |×k
≥0

and M ∈ R |E |×k
≥0

, then column normalizes the

document factor matrix to unit 2-norm and uses its max row

indices to assign documents to clusters.

• K-Means (KM) runs the K-Means clustering algorithm to

obtain a document clustering on the tf-idf matrix.

• Clique Random Walk Clustering (CRWC): In [33] Zhou pro-

posed the uniform random walk discussed in Section 2.2.

The probability transition matrix for this random walk is

P = D−1V XTZD−1E X. This matrix is fed into Algorithm 1 in

place of the EDVW stochastic matrix on line 1. The matrices

in this equation are the same as for CHC above. This method

is included to assess the value of using EDVW vs EIVW.

• Spectral Bi-Clustering (SBC) [13] uses a weighted incidence

matrix to obtain both edge and vertex clusterings. Following

[13], we use the tf-idf matrix to cluster documents. An SVD

is applied to a normalized tf-idf matrix D−1/2
1

RD−1/2
2

where

D1 = diag(Re) and D2 = diag(RTe). Then k-means is run

on a set of truncated-normalized singular vectors.

Table 1 summarises various attributes in hypergraph clustering

algorithms and indicates if each algorithm utilizes them. The at-

tributes are 1) Random Walk, if an algorithm is based on a random

walk formulation, 2) Spectral, if an algorithms uses the spectrum

of a matrix to cluster, 3) EDVW, if an algorithm uses information

from edge-dependant vertex weights, and 4) EIVW if an algorithm

uses edge-independent vertex weights. A✓ indicates a “has" or yes

while a × indicates a “has not" or no.

6 EXPERIMENTS
We test our proposed methods on a number of datasets. Most of

these data sets come with ground truth allowing various metrics to

be used to assess the output quality of an algorithm.

6.1 Data Sets and Preprocessing
We experiment on the following four data sets:

• 20-Newsgroups

• United States Patents Data

• Reuter’s Corpus Volume 1

• Gene-Disease Data

Alg Random Walk Spectral EDVW EIVW

RDC-Spec ✓ ✓ ✓ ×

RDC-Sym ✓ × ✓ ×

CHC ✓ ✓ × ✓
NMF × × ✓ ×

KM × ✓ ✓ ×

CRWC ✓ ✓ × ✓
SBC × ✓ ✓ ×

Table 1: Algorithm characteristics on whether random
walks are used (Random Walk), eigenvalues are used to
cluster (Spectral), and whether edge-dependent or edge-
independent vertex weights are considered (EDVW, EIVW).

Data #-Vertices #-Hyperedges NNZ (Ind. Mtrx) #-Clstrs

G1 1498 22755 .0049 4

G2 1545 19081 .0048 4

G3 1430 19412 .0048 4

G4 1945 20260 .0039 5

A22 835 4496 .0160 15

A42 965 4692 .0140 17

D02 744 4499 .0151 12

B06 688 4106 .0164 12

RCV1 9625 29969 .0023 4

GD 2261 12368 .0041 na

Table 2: Hypergraph data statistics. For text data, statistics
are reported after pruning with a sparsity parameter of 0.2.
The labels G1-G4, A22-B06, RCV1, and GD refer to 20News-
groups, US Patents, Reuters Corpus Volume 1, and gene-
disease datasets, respectively; see Section 6.3 for more.

For each text data set the documents are taken as vertices and the

words are taken as hyperedges. The corresponding EDVWs are the

tf-idf values. That is for the matrix R, as in Eqn. (3), rows correspond
to words and columns corresponding to documents. The entry in

thewth row and dth column of R is the tf-idf value between thewth

word and the dth document. Each hyperedge weight is computed

as the standard deviation of a word (row of R) in the tf-idf matrix

and encoded in the matrix W as in Eqn. (3)[8]. A few preprocessing

steps are applied to each dataset. Following [13], words that appear

in over a certain fraction of the data-sets are removed, this fraction

is determined experimentally and the best one is chosen for each

algorithm. We refer to this parameter as the sparsity parameter.

Similarly, words that only appear in a single document or that

appear in no documents are removed. Every data set is checked

to make sure it consists of a single connected component. Various

information about each data set is listed in Table 2.

6.2 Clustering Metrics
In order to assess clustering quality on the 3 text data sets we

compute the Normalized Mutual Information (NMI), average F1
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Figure 2: Clustering scores based on NMI, Jaccard index, and
F1 score, for 4 subsets of the 20News data set.

score, and Jaccard index. These metrics are based on comparing two

clustering results represented by X and Y , which may be treated as

two vectors of integer labels where Xi = X j only if the ith and jth
(i , j) vertices are assigned to the same cluster. For our purposes

one ofX andY is the ground truth cluster labels and the other is the

predicted cluster labels from some clustering algorithm. Normalized

mutual information (NMI) is given by
2·I (X ,Y )

H (X )+H (Y ) , where I (X ,Y )

is the mutual information and H (X ) is the entropy. The average
F1 score is a generalization of the F1 score for multi-clusterings.

|X | ∪ |Y | is the number of points the two assignments classify the

same and |X | ∩ |Y | is |X | + |Y | − |X ∪ Y |. For two clusters, the F1

score (see [31]) is F1 (X ,Y ) = 2
|X∩Y |
|X |+ |Y | , and the Jaccard index is

J (X ,Y ) = |X∩Y |
|X∪Y | . In order to handle multi-clustering, we use the

Khun-Munkres algorithm to compute a matching between clusters

to maximize the overall score for both the Jaccard and average F1

scores. This approach is similar to that used by Kuang et al. [20].

6.3 Results
6.3.1 20-Newsgroups. The first set of experiments was done on the

20-News
3
data set. This data set consists of 4 major categories each

with a varying number of subcategories. We select 4 subsets of the

subcategories to cluster on. The subcategories for each experiment

are G1) OS Microsoft Windows, automobiles, cryptography, and

politics-guns, G2) atheism, computer graphics, medicine, and Chris-

tianity G3) Windows X, motorcycles, space, religion-miscellaneous

and G4) computer graphics, OS Microsoft Windows, IBM PC hard-

ware, MAC hardware, and Windows X. The first three groups are

expected to be well separated while the last is expected to present a

more challenging clustering problem. All clusters have between 318

and 398 documents. Some basic statistics from the 20-News data set

subsets we use are given in Table 2 for G1-G4. These hypergraph

statistics are all from using a pruning parameter of 0.2 which gives

representative results for all algorithms. From Figure 2 we observe

3
http://qwone.com/ jason/20Newsgroups/

Figure 3: Clustering scores based on NMI, Jaccard index, and
F1 score, for four US Patents data sets.

that our framework gives competitive results for all subsets of the

20-News data.

6.3.2 US-Patents. This data was originally processed by Du et

al. [14] from the Patents View
4
website and contains word count

and citation information for a number of patents claims for 13

different categories (denoted A22, B06, etc.) each with multiple

sub-classes. These sub-classes are used as ground truth and only

patents belonging to a single sub-class are used. Finally, only sub-

classes with 40 or more patents are kept. For our experiments we

selected the categories A22, A42, D02, and B06 as these each have a

sufficient number of patents that belong to only a single sub-class.

As this data also contains information onwhich patents reference

each other, this additional citation information may be utilized via

Joint-NMF (J-NMF) style algorithms, which solve

min

{M,Z,M̃}≥0
∥X − ZMT∥2F + γ ∥S −MM̃T

|2F + β ∥M − M̃∥2F (18)

where X ∈ R |E |× |V |
≥0

(here, X does not necessarily refer to a 0,1 inci-

dence matrix) and S ∈ R |V |× |V |
≥0

and {β,γ } ≥ 0 are some weighting

parameters. The matrix M is then used to obtain clusters similar to

the standard NMF clustering procedure. Note that if β = γ = 0 then

a standard NMF objective is recovered. For our experiments we set

γ and β as recommended by Du et al. For this data set X is set to the

EDVW incidence matrix R and S is a symmetric, 0, 1matrix indicat-

ing if two patents cite each other. Additionally, we adapt J-NMF to

utilize Chung’s Laplacian via the matrix T, eq. (15), and decompose

two symmetric matrices. We refer to this as Joint-Symmetric NMF

(JS-NMF), the new objective is given in Eqn. (19).

min

{M,M̂,M̃}≥0
∥C−MM̂T

∥2F +α ∥M−M̂∥2F +γ ∥S−MM̃T
|2F +β ∥M−M̃∥2F

(19)

where C ∈ R |V |× |V |
≥0

is T and S is the patent citation data as in Eqn.

(18). We note that JS-NMF performs the best out of all algorithms

for 3 of the 4 US-Patent groups, as can be seen in Figure 3. Due to

the enforcement of symmetry for both norms in Eqn. (19), there is

4
www.patentsview.org
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Figure 4: Clustering scores based on the measures of NMI,
Jaccard index, and F1 score, for RCV1 Data.

an additional parameter α , similar to γ and β , that must be chosen.

For fairness we attempt to generalize Du et al.’s recommendation

for parameter setting but believe performance could further be

improved if more effort were put into selecting these parameters.

Results are visualized in Figure 3.

6.3.3 RCV1. The Reuters Corpus Volume 1 (RCV1)
5
data set is a

collection of newswire stories. Table 2 lists some basic statistics

for this data. This is the largest data set we run on and we observe

a similar trend to the two previous experiments. RDC-Spec and

RDC-Sym perform competitively with CHC, with scores separated

by very slim margins. The scores for each clustering quality metric

are visualized in Figure 4.

6.3.4 Gene-Disease Data. This dataset consists of collections of
genes associated with human diseases, taken fromDisGeNET

6
. This

may be modeled as a hypergraph in which vertices are diseases,

and genes are hyperedges. Table 2 presents basic statistics for this

data. For each disease-gene pair, DisGeNET computes a “Gene

Disease Association" (GDA) score between 0 and 1, which is based

on the number of and types of sources supporting that disease-

gene association. Higher values indicate stronger associations; see

DisGeNET’s documentation
7
for full details. For our purposes, GDA

scores serve naturally as EDVW for the disease-gene hypergraph.

Since this dataset lacks ground truth clusters, we turn to other

clustering quality metrics. Du et al. in [15] report the average-Ncut

value obtained by various clustering algorithms on a number of

data sets. This technique is difficult to apply directly to our work

where different algorithms are based on different representations

of a hypergraph: different representations assign different edge

weights which affect the Ncut values. To this end we run RDC-Spec,

RDC-Sym, and CHC on the Gene-Disease hypergraph and compute

the average-Ncut and average-conductance, Eqns. (20) and (21), of

each clustering over 10 different sparsifications of the hypergraph.

These 3 algorithms are chosen as they tend to achieve consistently

5
http://www.daviddlewis.com/resources/testcollections/rcv1/

6
https://www.disgenet.org/

7
https://www.disgenet.org/dbinfo

Graph RDC-Spec RDC-Sym CHC
ANC-T 0.1470 0.1177 0.1953

ANC-∆ 0.2541 0.2218 0.3019

ACo-T 0.2999 0.2479 0.3906

ACo-∆ 0.5193 0.4654 0.6038

Table 3: Average-Normalized cut (ANC) and Average-
Conductance (ACo) values for RDC-Spec, RDC-Sym, and
CHC on matrices T and ∆ with 15 clusters

Graph RDC-Spec RDC-Sym CHC
ANC-T 0.1681 0.1331 0.2059

ANC-∆ 0.2879 0.2492 0.3133

ACo-T 0.1681 0.1363 0.2059

ACo-∆ 0.2879 0.2558 0.3133

Table 4: Average-Normalized cut (ANC) and Average-
Conductance (ACo) values for RDC-Spec, RDC-Sym, and
CHC on matrices T and ∆ with 25 clusters.

high scores on the previous data sets. Each sparsified input data set

is clustered 10 times and the average of the average-normalized cut

and average-conductance is computed. We report the best scores

for each algorithm.

Av-Ncut(S1, · · · , Sk ) =
1

2k

k∑
i=1

vol(∂Si )

vol(Si )
(20)

Av-Cond(S1, · · · , Sk ) =
1

2k

k∑
i=1

vol(∂Si )

min{vol(Si ), vol(S
c
i )}

(21)

Additionally, for every pair of algorithms that are based on two

different hypergraph representations, each algorithm is run on

the other algorithm’s hypergraph representation, producing two

different scores. For example, the clustering yielded by RDC-Spec

operating on T, Eqn. (15), is taken and its average-Ncut and average-
conductance values are computed on the matrix ∆, Eqn. (17). The

same is done for RDC-Sym and the reverse is done for CHC. Note

these matrices have the same non-zero pattern. Therefore differ-

ences in cuts values and clusterings are due to edge-weightings.

Tables 3 and 4 present the results for 15 and 25 clusters respectively.

These cluster sizes were chosen arbitrarily. RDC-Spec and RDC-

Sym achieve lower cut and conductance scores than CHC on both

graphs.

7 CONCLUSION
We presented a flexible framework for clustering a hypergraph

and showed that edge-dependent vertex weights represents the

information in a hypergraph well in the context of clustering. As

recently proposed [8], these weights may be utilized to define hy-

pergraph randomwalks, which naturally yield a number of different

hypergraph Laplacians via the representative digraph of the ran-

dom walk. Focusing on Chung’s normalized digraph Laplacian, we

explained its effectiveness as a representation of a hypergraph for

clustering based on its relationship to a normalized cut criterion,

and proposed a suite of clustering algorithms that utilize this input.
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We demonstrated the viability of our frameworks in comparison to

other methods through experiments on 3 text datasets with ground

truth, and on a gene-disease relation data set via well-known parti-

tion quality metrics. We found algorithms utilizing the proposed

hypergraph Laplacian performed consistently well and frequently

better than other methods.

Many directions remain for future work. First, among the hyper-

graph Laplacians considered in Section 3.2, we only utilized Chung’s

normalized digraph Laplacian in our experiments, although other

Laplacians can be derived from the representative digraph. It would

be interesting to explore whether these Laplacians are effective

representations for hypergraph clustering – particularly Li and

Zhang’s asymmetric digraph Laplacian [24], which we studied in

Proposition 3.1, as well as complex-valued digraph matrices utilized

in recent clustering work [12]. Additionally, we observed better per-

formance from joint methods that utilize multiple representations

and many other combinations here can be explored [14].

Second, rather than utilize EDVW random walks to form Lapla-

cians for clustering, an alternative approach is to use measures

associated with the random walk itself, such as hitting and com-

mute times. Such parameters serve as relational measures between

pairs of vertices; for instance, hitting times measure the expected

number of steps until one vertex is reached from another, and have

been utilized in digraph clustering schemes [7]. In the context of

EDVW hypergraph random walks, such metrics may be of similar

use for hypergraph clustering.
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