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Abstract

Phasor measurement units (PMUs) allow voltage
angle differences across power grids to be monitored
to identify sudden shifts associated with system
disturbances. The Eastern Interconnection Situational
Awareness and Monitoring System (ESAMS) was
developed to identify such wide-area disturbances and
summarize them in reports released the following day.
Demonstration of ESAMS in North America’s Eastern
Interconnection revealed the need for an effective visual
summary of the disturbance’s impact on voltage angle
pairs. This paper proposes the use of the circular
variance, a measure of dispersion applicable to angular
data, for this purpose. Results based on PMU data from
North America’s Eastern and Western interconnections
indicate that the circular variance provides useful
summaries of wide-area voltage angle measurements.
They also show that the circular variance may have
potential uses when applied to historical data to identify
unusual grid conditions.

1. Introduction

Phasor measurement units (PMUs) provide power
system operators with a wide-area view of the grid
that leads to improved situational awareness and system
reliability. The history, applications, and widespread
adoption of PMUs throughout the world are discussed
in [1]. PMUs typically report voltage phasors
(magnitude and phase), current phasors, frequency,
and rate of change of frequency (ROCOF) 30 or
60 times per second in 60 Hz systems. These
measurements are termed synchrophasors because they
are time-synchronized across geographically dispersed
devices, often using the global positioning system
(GPS). The high reporting rate, availability of angle
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values, and synchronization of PMU measurements
make them instrumental in a number of power system
applications, including post-mortem analysis, model
validation, state estimation, protection, and control [1].

It is now relatively common for system operators to
deploy these applications using PMUs from within their
own footprint. As these organizations have achieved
success, interest has grown in interconnection-scale
applications to provide visibility beyond an operating
entity’s footprint. This interest led to the development
of the Eastern Interconnection Situational Awareness
and Monitoring System (ESAMS) to foster review
and discussion of grid disturbances [2, 3, 4]. Using
synchrophasor measurements streamed from across
North America’s Eastern Interconnection (EI), ESAMS
monitors for disturbances such as oscillations, generator
trips, and sudden shifts in voltage angle pairs spanning
the interconnection. During the system’s testing at PJM
Interconnection from June 2021 through March 2022,
disturbances were summarized in a daily report that was
delivered to seven operating entities by email. Events of
particular interest were then reviewed and discussed in
detail. The work presented in this paper was motivated
by the need for a visual summary of a disturbance’s
impact on voltage angles for use in future versions of
the daily report.

The inclusion of voltage angle pair monitoring in
ESAMS was motivated by their existing use for a
variety of applications. For example, voltage angle
pairs can be monitored following a transmission line
outage to ensure that synchrocheck relay settings will
not prevent the line from returning to service [5]. For
corridors containing multiple transmission lines, the
phase angle difference across the corridor can provide
useful information about stress that may not be apparent
in power flows [6]. This concept can be extended to
evaluate the stress of an area with boundaries monitored
by PMUs [7, 8, 9]. Voltage angle pairs can also serve
as a stress indicator at the interconnection-scale [10].
These uses are supported by real-world observations of
diverging voltage angle pairs leading up to significant
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Figure 1. Polar plot of voltage angles corresponding

to time 0 in Figure 2.

outages [11]. Descriptions of tools used by system
operators that monitor voltage angle pairs can be found
in [5, 10, 12, 13].

For use in real-time operations, stress and stability
monitoring based on phase angle differences requires
detailed model-based studies [11]. ESAMS operates
exclusively on PMU measurements, with no access to
a power system model, Energy Management System
(EMS), or Supervisory Control And Data Acquisition
(SCADA) measurements. With these constraints, it
is not possible to set alarm thresholds like those
used in a control room. Rather, ESAMS uses
measurements to establish baseline behavior and then
identify statistically significant deviations from the
baseline [2, 3]. When considering voltage angle
pairs, deviations can correspond to changes in topology
and generation dispatch. Determining whether these
deviations correspond to increases in system stress or
decreases in stability margins is beyond the scope of
ESAMS. Rather, the system identifies periods of interest
to foster discussion and further analysis among the
system operators that receive daily reports.

One of the challenges in generating ESAMS reports
has been effectively visualizing the impact of a grid
disturbance on voltage angle pairs. Polar plots like the
one in Figure 1, which are commonly used in real-time
monitoring software [14], only display a snapshot of
the voltage angles at a particular moment. For static
reports, like those generated by ESAMS, a time-domain
representation is needed. However, plots containing
several voltage angle pairs together, as in Figure 2, tend
to be cluttered and difficult to interpret.

This paper describes how the circular variance was
selected as a metric to visually summarize the impacts of
grid disturbances on voltage angle pairs. As described in
Section 2, the circular variance provides an indication of

Figure 2. Voltage angle differences across the EI

during a typical system disturbance.

a dataset’s spread. Unlike alternative metrics such as the
conventional standard deviation, the circular variance
is specifically applicable to angular data and therefore
provides consistent summaries of the power system’s
voltage angles during disturbances. Shortcomings of
the standard deviation are further discussed in Section
3. The value of the circular variance for summarizing
grid disturbances is established in Section 4 using
field-measured data from North America’s Eastern and
Western interconnections. It is also shown that the
circular variance has a daily cycle corresponding to load
changes. Thus, it may be useful for establishing baseline
behavior and identifying deviations during analysis of
archived PMU data. The paper concludes with a
discussion of findings and expectations for future work
in Section 5.

2. Circular Variance

Circular statistics summarize angular data much in
the same way that the mean, standard deviation, and
variance provide summaries of linear data. To motivate
the need for circular statistics, consider the mean of
356◦ and 2◦. Though near each other on the unit circle,
their linear mean is far away at 179◦. Circular statistics
address this type of challenge. Detailed derivations and
discussion of circular statistics can be found in [15].
Here, an intuitive introduction to the circular mean and
circular variance is provided using an approach and
notation from [16].

To analyze angular data, it is helpful to associate
each angle, θp, with a unit vector. The sum of these
vectors divided by the number of data points is given by

µ1 =
1

n

n∑
p=1

ejθp . (1)

The angle of µ1 is known as the mean direction. The
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Figure 3. Examples of circular variance for input

angles that are evenly distributed (top), equal

(bottom) and unevenly distributed (middle).

mean direction is useful for summarizing clustered angle
values, but it is of less interest in this work because the
voltage angles from across an interconnection are not
expected to be clustered. Rather, the dispersion of the
angles is of primary interest.

The magnitude of µ1 is related to the dispersion of
the data. Consider the three examples in Figure 3. In
the top example the input angles are distributed evenly
around the unit circle, so µ1 = 0. The bottom example
shows the other extreme, where all three angles are
identical. In this case, µ1 has a magnitude of 1 and its
angle is equal to the input data. The middle example
shows a case where the input angles are unevenly
distributed, leading to an intermediate magnitude of
|µ1| = 0.62. As dispersion increases, µ1 moves towards
the center of the unit circle and its magnitude decreases.
For this reason, the circular variance is defined as

vc = 1− |µ1|. (2)

One property of the circular variance that is helpful
for displaying results is that its range is between 0 and
1. In addition, its calculation is straightforward and it
provides consistent results, regardless of where angles
are located on the unit circle. To further motivate its

Figure 4. An example of three voltage angles (top)

from two adjacent time periods (left and right) with

corresponding standard deviations (bottom). The

standard deviation shifts every time a voltage angle

wraps.

use, shortcomings of the standard deviation for this
application are discussed in the following section.

3. Shortcomings of the Linear Standard
Deviation

The standard deviation was first considered for this
application after seeking a summarizing metric through
the application of graph theory. The relationship
between graph theory and the standard deviation is not
critical to support use of the circular variance, but it
is described in the Appendix for the interested reader.
This section describes the shortcomings of the standard
deviation as a summarizing statistic for voltage angle
measurements that led to the use of the circular variance.

The examples in this section are based on a set of
3600 voltage angle measurements from three PMUs.
The 3600 samples are split into two periods, with
Period 1 covering the first 1800 samples and Period 2
covering the second 1800 samples. The three voltage
angle measurements and their corresponding standard
deviations are plotted in Figure 4. Note that the standard
deviation shifts significantly each time a voltage angle
wraps between 180◦ and −180◦. This is undesirable
because the shifts are unrelated to changes in the power
system’s state; they only reflect the way the angles are
represented.

It might seem obvious to address this problem by
unwrapping the voltage angles to remove jumps between

Page 2614



Figure 5. Voltage angles unwrapped across time

(top) from two adjacent time periods (left and right)

with corresponding standard deviations (bottom).

The standard deviations are smooth but do not match

between time periods.

180◦ and −180◦. This can be done with a simple
command in multiple programming languages. Results
with unwrapped voltage angles are presented in Figure
5. Though the sudden shifts in the standard deviation are
removed, the values are significantly different between
Periods 1 and 2. It is undesirable for a summarizing
metric’s value to depend on when the analysis begins.

One approach to address this limitation is to unwrap
the voltage angles across PMUs. At each time step, the
measurement from the red curve is adjusted by 360◦

if it is more than 180◦ from the blue curve. Then the
measurement from the green curve is adjusted by 360◦

if it is more than 180◦ from the red curve. Results from
this approach are presented in Figure 6. As desired,
the standard deviation is consistent between the two
periods. However, this approach is also flawed because
it depends on the ordering of the signals. Figure 7 shows
that the standard deviations for this approach shift for
Period 1 when the signal order changes from {blue, red,
green} to {red, blue, green}. It is undesirable for a
summarizing metric’s value to depend on the order that
the input data is arranged.

These difficulties motivated the use of the circular
variance because it is well suited to angular data.
Specifically, it gives consistent results regardless of
when the analysis begins or the arrangement of the
input data. Its limited range between 0 and 1 is
also convenient for interpretation and plotting. The
usefulness of the circular variance for summarizing

Figure 6. Voltage angles unwrapped across PMUs

(top) from two adjacent time periods (left and right)

with corresponding standard deviations (bottom).

The standard deviations match for both time periods.

Figure 7. Voltage angles unwrapped across PMUs

(top) with corresponding standard deviations

(bottom). The standard deviations do not match for

signal orders {blue, red, green} (left) and {red, blue,
green} (right).
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Figure 8. Circular variance of EI voltage angles

during the system disturbance in Figure 2.

voltage angle measurements is further established with
field-measured data in the following section.

4. Results

In Section 1, Figure 2 was used to motivate the need
for a visual summary of a power system’s voltage angle
differences. The voltage angles used to generate Figures
1 and 2 were collected from the EI during the ESAMS
demonstration. They span much of the EI. As a first
example of the circular variance’s usefulness, consider
the summary of these same measurements presented in
Figure 8. The circular variance clearly shows that the
system disturbance caused the voltage angles to spread
apart, which is not easy to see in the multiple voltage
angle pairs of Figure 2.

Additional examples of the circular variance making
it easier to interpret disturbance recordings are presented
in Figures 9 and 10. These figures were also generated
using data from the EI collected during the ESAMS
demonstration. Figure 9 shows a case where the shift
in voltage angles caused by the system disturbance
was undone within a few minutes. No such return is
observable in Figure 8 or the minutes that followed it.
Figure 10 shows a case where the disturbance had a very
brief impact on the voltage angles. Together, Figures
8-10 show the diversity of responses to grid disturbances
and how the circular variance provides a better visual
summary than plots containing several voltage angle
differences.

Additional testing was completed with
measurements collected by Bonneville Power
Administration (BPA), a transmission owner and
operator headquartered in Portland, Oregon. Figure
11 depicts the circular variance and voltage angle

Figure 9. Disturbance of the EI as depicted by the

circular variance of voltage angles (top) and a set of

voltage angle pairs (bottom).

Figure 10. Disturbance of the EI as depicted by the

circular variance of voltage angles (top) and a set of

voltage angle pairs (bottom).

Page 2616



Figure 11. Circular variance (top) and full set of

voltage angle pairs (bottom) indicating the outage of

transmission lines and their re-energization in two

steps.

differences for a fault along a major transmission
corridor occurring just prior to the 120-second mark
in the plots. The resulting line trip caused the spread
of voltage angles to decrease for approximately two
minutes. The circular variance’s return to its initial
value approximately 2 minutes later provides strong
evidence that the lines were restored in two steps,
bringing the system back to its initial state.

Next, consider the two frequency disturbances in
Figure 12. These events occurred several days apart, but
they appear very similar in the frequency measurements.
Though the circular variance starts off at similar values
in the two cases, the responses to the disturbances
are significantly different. In Event 1, the separation
between voltage angles tended to decrease, resulting in
a large drop in the circular variance that persisted for
the entire period during which the frequency recovered.
However, Event 2 led to a small increase that gradually
faded as the frequency recovered. In this way, the
circular variance provides additional information about
the effect of a system disturbance within a particular
footprint. The full set of angle pairs displayed in Figure
13 validate the circular variance results. They also
demonstrate that such plots tend to be crowded and are
not ideal for communicating these insights in ESAMS
reports.

Along with evaluating disturbances, the circular
variance may be used to establish a baseline and
identify unusual periods in historical data archives. To

Figure 12. Frequency measurements (top) and

circular variance (bottom) for two grid disturbances.

Figure 13. Full set of voltage angle differences for

Event 1 (top) and Event 2 (bottom) of Figure 12.
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Figure 14. Circular variance of voltage angles from the BPA system for the month of August 2020.

Figure 15. Circular variance of BPA’s voltage angles and BPA load for a week in August 2020 with very high

loading in the Western US power grid.

demonstrate this, the circular variance was calculated for
the entire month of August 2020. The full set of results
is presented in Figure 14. The circular variance tends
to follow a daily cycle, a pattern that is easier to see
for the one-week period in Figure 15. This figure also
shows the correlation between the circular variance and
the total load reported by BPA as a balancing authority
[17]. The week in Figure 15 includes the circular
variance’s two largest peaks from the month of August.
These peaks occurred on the same two days that rolling
blackouts were initiated in California to manage an
insufficient power supply driven by high temperatures
throughout the Western US [18]. It is interesting to note
that the higher loads experienced by BPA later in the
week were accompanied by lower values for the circular
variance. This result is not intended to motivate the
circular variance’s use to monitor grid stress or generate
alarms. Rather, it indicates that the circular variance
may serve as a useful metric when searching historical
data for periods of interest.

Analyzing such long record lengths requires
consideration of data availability. Measurements
can be unavailable due to scheduled maintenance,
communication dropouts, data quality problems, etc.
In the BPA dataset analyzed here, measurements from
one PMU were omitted because they were unrealistic
for the entire analysis period, likely due to work being

performed at the substation. All other periods of data
unavailability lasted for less than a few seconds and
could be addressed with simple linear interpolation. In
general, signals that cannot be interpolated should be
removed from the analysis to avoid shifts in the circular
variance as the number of input signals changes.

5. Conclusion

The results presented in the previous section
demonstrate the utility of the circular variance for
summarizing voltage angle measurements. In particular,
it can provide valuable insight into a power system’s
response to disturbances, making it an excellent tool
for visualizing the disturbances detected by ESAMS.
The circular variance also shows potential when applied
to historical data to identify unusual grid conditions.
This application requires additional study to formalize
methods for determining when the circular variance
indicates grid conditions are unusual enough to warrant
review.

Another potential avenue for future work is
extracting additional practical insight from the circular
variance. For example, the signals contributing most to
a change in the circular variance during a disturbance
could be identified and used to localize the area of
the grid most impacted by the disturbance. Further,
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Figure 16. Example of a weighted digraph with four

vertices. Edge weights are denoted as wp,q.

a sensitivity analysis could be conducted to identify
which signals have the greatest impact on the circular
variance’s value. There may be additional value from
combining an interconnection-scale analysis, which was
demonstrated with EI data, with a regional analysis like
the one performed with BPA data. Studies such as
these could be used to extend the value of the circular
variance’s application to voltage angle measurements
beyond a visual summary.

6. Appendix

As mentioned in Section 3, the circular variance was
selected after recognizing shortcomings in the standard
deviation’s application to angular data. The standard
deviation came into consideration after attempting to
derive a metric through the application of graph theory.
This appendix describes that initial effort to better
explain why the standard deviation was first considered.

In mathematics, a graph is a representation of
relationships between objects. More formally, a graph
G = (V,E) consists of a set of objects V called
vertices and a set of pairs of vertices E called edges,
which denote relationships. Edges may also be assigned
weights, creating a weighted graph, and direction,
creating a directed graph (digraph). In this work, we
will consider weighted digraphs. Figure 16 illustrates
an example of a weighted digraph, where vertices are
represented by dots and edges by directed arcs. Letting
p → q indicate an edge exists from vertex p to vertex
q, the edge weights are denoted as wpq . The adjacency
matrix A defining a weighted digraph is then

Apq =

{
wpq if p → q,

0 otherwise.
(3)

The need to quantify the similarity between two
graphs arises in many domain areas. Accordingly,
graph theorists have proposed a plethora of graph

distance measures, such as graph edit distance [19],
iterative vertex-neighborhood methods [20], maximum
common subgraph based distance [21], and others.
In this work, we utilize a notion of graph distance
based on the eigenvalues of the adjacency matrix.
Graph eigenvalues, including adjacency, Laplacian,
and normalized Laplacian eigenvalues, serve as global
summary statistics that capture far-ranging structural
properties of the graph [22].

If the graph is undirected, the eigenvalues of the
adjacency matrix are real,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

Then the adjacency spectral distance between graphs
with adjacency matrices A1 and A2 is defined as [23]

D(A1, A2) =

√√√√ n∑
i=1

|λi(A1)− λi(A2)|2. (4)

Extending these concepts to digraphs requires care
because the eigenvalues may be complex. As will be
discussed soon, the particular class of digraph adjacency
matrices we study are guaranteed to have precisely two
nonzero, purely imaginary eigenvalues of the form

λ(Ak) = ±jωk. (5)

Consequently, we propose a straightforward analog of
spectral distance between these matrices. Plugging (5)
into (4) simplifies to

D(A1, A2) =
√
2|ω1 − ω2|. (6)

To build the graphs considered in this paper, a vertex
was assigned to each PMU. Edges were placed between
all PMU pairs, and the difference between the voltage
angles for each PMU pair was assigned as the edge’s
weight. This setup is depicted in Figure 17, where θp
denotes the voltage angle measurement at PMU p. With
these weights, the adjacency matrix becomes

A′
pq = θp − θq. (7)

The ′ symbol denotes that this matrix is a special case of
(3).

The initial concept for this work was to compare
two graphs, one constructed with voltage angles before
a grid disturbance and the other constructed after the
disturbance. The adjacency spectral distance was
selected to quantify this comparison, so the eigenvalues
of A′

pq were of interest. In the configuration given
by (7), the adjacency matrix has precisely two nonzero
eigenvalues, which we show are given by

λ(A′) = ±j

√√√√n

n∑
p=1

θ2p −

(
n∑

p=1

θp

)2

. (8)
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Figure 17. Setup of the graph used to analyze

voltage angle measurements, which are denoted as θp.

Proof. Letting Θ := (θ1, . . . , θn), the matrix A′ may
be written as Θ1T −1ΘT , where 1 denotes the all-ones
vector. Since Θ is not a multiple of 1, it follows A′

has rank 2 and has precisely 2 nonzero eigenvalues.
Any eigenvector x of A′ associated with a nonzero
eigenvalue can be written as x = c1Θ + c21, where
c1 and c2 are nonzero. Rearranging A′x = λx, we have

(c11
TΘ+ c21

T1− c1λ)Θ

+ (−c1Θ
TΘ− c2Θ

T1− c2λ)1 = 0.

Since Θ and 1 are linearly independent, the coefficients
in the equation above must also be zero, yielding a
homogenous linear system[

1TΘ− λ 1T1
−ΘTΘ −ΘT1− λ

]
,

which, upon solving, yields the nonzero eigenvalues of
A′ are ±j

√
1T1ΘTΘ− (ΘT1)2.

Letting µ denote the sample mean of Θ, (8) can be
rearranged as

λ(A′) = ±j × n

√√√√ 1

n

n∑
p=1

θ2p −

(
1

n

n∑
p=1

θp

)2

= ±j × n

√√√√ 1

n

n∑
p=1

θ2p − µ2

= ±j × n

√√√√ 1

n

n∑
p=1

(θp − µ)2

= ±jns (9)

where s denotes the uncorrected sample standard
deviation of Θ (the corrected sample standard deviation,

which is more commonly used in practice, is scaled by
n− 1 instead of n).

The fact that only two eigenvalues are nonzero leads
to a useful interpretation of the distance between graphs.
Let s1 and s2 denote the standard deviation terms
associated with adjacency matrices A′

1 and A′
2, which

represent two points in time. Then it follows from (6)
that

D(A′
1, A

′
2) =

√
2n |s1 − s2| . (10)

Thus, the spectral distance between two graphs
constructed according to (7) is proportional to the
difference between the standard deviations of the angle
pairs.

This result can be extended to summarize changes
in the power system’s voltage angles over time. Rather
than calculating (10) for two points in time, the standard
deviation can be calculated for every PMU report.

When shortcomings in the standard deviation’s
application to angular data were identified, it was
replaced with an alternative measure of dispersion
designed specifically for angular data: the circular
variance. From a graph theory perspective, the circular
variance is not just a measure of the voltage angles’
dispersion. It also indicates how much the power
system, represented as a graph defined by (7), changes
over time.

Acknowledgment

The authors would like to thank Sandra Jenkins,
DOE Office of Electricity, Transmission Reliability
and Renewable Integration program, for her support
and guidance. We also gratefully acknowledge the
many individuals from Eastern Interconnection system
operators who have provided support for the ESAMS
project. Hamed Golestani, Subbarao Eedupuganti,
David Hislop, Christopher Callaghan, and Eric Hsia
from PJM deserve special thanks, along with Shaun
Murphy, who is formerly with PJM. The authors would
also like to thank Bonneville Power Administration
(BPA) for providing measurements to support this study.
Finally, we thank Joseph Eto from Lawrence Berkeley
National Laboratory for leading the ESAMS effort and
our collaborators at EPG, Ken Martin, Neeraj, Nayak,
Horacio Silva-Saravia, Simon Mo, and Song Xue.

References

[1] A. G. Phadke and T. Bi, “Phasor measurement units,
WAMS, and their applications in protection and control
of power systems,” Journal of Modern Power Systems
and Clean Energy, vol. 6, no. 4, pp. 619–629, 2018.

[2] B. Amidan, J. Follum, T. Yin, and N. Betzsold, “FY18
Discovery Thru Situational Awareness: Anomalies,

Page 2620



oscillations, and classification,” PNNL-27812. Richland,
WA: Pacific Northwest National Laboratory., Tech. Rep.,
2018.

[3] J. Follum, N. Betzsold, T. Yin, and J. Buckheit, “Event
screening methods for the Eastern Interconnection
Situational Awareness and Monitoring System
(ESAMS),” PNNL-30137. Richland, WA: Pacific
Northwest National Laboratory, Tech. Rep., 2020.

[4] J. Follum, T. Yin, and N. Betzsold, “Regional oscillation
source localization: Implementation in the ESAMS
tool.” PNNL-29612. Richland, WA: Pacific Northwest
National Laboratory, Tech. Rep., 2020.

[5] “Phase angle monitoring: Industry experience following
the 2011 Pacific Southwest outage: Recommendation
27,” North American Electric Reliability Corporation
(NERC) Synchronized Measurement Subcommittee
(SMS), Tech. Rep., 2016. [Online]. Available:
https://www.nerc.com/comm/PC/Pages/Synchronized-
Measurement-Subcommittee-(SMS)-Scope.aspx

[6] J. Giri, M. Parashar, J. Trehern, and V. Madani,
“The situation room: Control center analytics for
enhanced situational awareness,” IEEE Power and
Energy Magazine, vol. 10, no. 5, pp. 24–39, 2012.

[7] J. W. Simpson-Porco and N. Monshizadeh, “Model-free
wide-area monitoring of power grids via cutset voltages,”
in 2016 IEEE 55th Conference on Decision and Control
(CDC), 2016, pp. 7508–7513.

[8] A. Darvishi and I. Dobson, “Threshold-based monitoring
of multiple outages with PMU measurements of area
angle,” IEEE Transactions on Power Systems, vol. 31,
no. 3, pp. 2116–2124, 2016.

[9] W. Ju, I. Dobson, K. Martin, K. Sun, N. Nayak, I. Singh,
H. Silva-Saravia, A. Faris, L. Zhang, and Y. Wang,
“Real-time area angle monitoring using synchrophasors:
A practical framework and utility deployment,” IEEE
Transactions on Smart Grid, vol. 12, no. 1, pp. 859–870,
2021.

[10] “Using synchrophasor data for phase angle monitoring,”
North American Synchrophasor Initiative (NASPI)
Control Room Solutions Task Team (CRSTT), Tech.
Rep., 2016. [Online]. Available: https://www.naspi.org/
node/351

[11] “Real-time application of synchrophasors for improving
reliability,” North American Electric Reliability
Corporation (NERC) Real-Time Application of PMUs
to Improve Reliability Task Force (RAPIR TF),
Tech. Rep., 2016. [Online]. Available: https:
//www.naspi.org/node/664

[12] D. Kosterev, “Synchrophasor technology at BPA,” in
Power Electronics and Power Systems. Springer
International Publishing, may 2018, pp. 77–127.

[13] H. Yuan, H. Zhang, and Y. Lu, “Virtual bus angle
for phase angle monitoring and its implementation
in the western interconnection,” in 2018 IEEE/PES
Transmission and Distribution Conference and
Exposition (T D), 2018, pp. 1–9.

[14] A. Agarwal, J. Balance, B. Bhargava, J. Dyer, K. Martin,
and J. Mo, “Real Time Dynamics Monitoring System
(RTDMS®) for use with synchrophasor technology in
power systems,” in 2011 IEEE Power and Energy Society
General Meeting, 2011, pp. 1–8.

[15] N. Fisher, Statistical Analysis of Circular Data, ser.
Statistical Analysis of Circular Data. Cambridge
University Press, 1995. [Online]. Available: https:
//books.google.com/books?id=wGPj3EoFdJwC

[16] K. Davidson, J. Goldschneider, L. Cazzanti, and
J. Pitton, “Feature-based modulation classification using
circular statistics,” in IEEE MILCOM 2004. Military
Communications Conference, 2004., vol. 2, 2004, pp.
765–771 Vol. 2.

[17] Wind generation and total load in the BPA
balancing authority. Bonneville Power Administration
(BPA). Accessed November 3, 2020. [Online].
Available: https://transmission.bpa.gov/Business/
Operations/Wind/default.aspx

[18] “Final root cause analysis: Mid-August 2020
extreme heat wave,” Prepared by the California
Independent System Operator, California Public
Utilities Commission, and California Energy
Commission, Tech. Rep., 2021. [Online]. Available:
http://www.caiso.com/Documents/Final-Root-Cause-
Analysis-Mid-August-2020-Extreme-Heat-Wave.pdf

[19] A. Sanfeliu and K.-S. Fu, “A distance measure between
attributed relational graphs for pattern recognition,”
IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-13, no. 3, pp. 353–362, may 1983.

[20] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and
P. V. Dooren, “A measure of similarity between graph
vertices: Applications to synonym extraction and web
searching,” SIAM Review, vol. 46, no. 4, pp. 647–666,
jan 2004.

[21] M.-L. Fernández and G. Valiente, “A graph distance
metric combining maximum common subgraph and
minimum common supergraph,” Pattern Recognition
Letters, vol. 22, no. 6-7, pp. 753–758, may 2001.

[22] F. C. Graham, Spectral graph theory. American
Mathematical Soc., 1997, vol. 92.

[23] I. Jovanović and Z. Stanić, “Spectral distances
of graphs,” Linear Algebra and its Applications,
vol. 436, no. 5, pp. 1425–1435, 2012.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0024379511006021

Page 2621


