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Abstract
Automated particle analysis (APA) provides a vast amount of compositional data via energy-dispersive X-ray spectroscopy along with size and 
shape data via scanning electron microscopy for individual particles in a sample. In many instances, APA data are leveraged to support 
identification of the source of a sample based on the detection of particles of a specific composition. Often, the particles that provide context 
make up a minuscule portion of the sample. Additionally, the interpretation of complex samples can be difficult due to the diversity of 
compositions both in the mixture and within a particle. In this work, we demonstrate a method to compute and cluster similarity graphs that 
describe inter-particle relationships within a sample using a multi-modal few-shot learning neural network. As a proof-of-concept, we show 
that samples known to have been exposed to gunshot residue can be distinguished from samples occasionally mistaken for gunshot residue. 
Our workflow builds upon standard APA techniques and data processing methods to unveil additional information in a readily interpretable 
and quantitatively comparable format.
Key words: automated particle analysis, deep learning, few-shot neural network, graph theory, scanning electron microscopy–energy-dispersive X-ray 
spectroscopy
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Introduction
Automated particle analysis (APA) has widespread use across 
a variety of scientific domains and industries, including ana-
lyses of inhaled particulate matter (Lowers et al., 2018; 
Hayden et al., 2023), soil mineralogy for environmental and 
forensic investigations (Pirrie et al., 2009; Pirrie & 
Rollinson, 2011; Schulz et al., 2020), and criminal forensics 
of gunshot residue (ASTM International, 2017; Charles 
et al., 2023). APA provides compositional data via energy- 
dispersive X-ray spectroscopy (EDS) along with size and shape 
data via scanning electron microscopy (SEM) of particles in a 
sample. A typical APA survey scan captures images and spec-
tra for thousands to tens of thousands of individual particles 
to provide a snapshot of the overall composition of the 
sample.

Real-world samples can be difficult to confidently charac-
terize due to the diversity of compositions both in the mixture 
and within individual particles. The National Institute of 
Standards and Technology (NIST) has developed an open- 
source software, DTSA-II (Goldstein et al., 2018), that quan-
tifies elemental compositions obtained from automated fitting 
of the EDS spectra. Using the set of normalized k-ratios ex-
tracted from each spectrum (Ritchie, 2023), one can apply 
rule-based algorithms to assign particles to user-defined 
material classes. Such hierarchical classification scheme has 
proven useful in a variety of applications, including the detec-
tion of laboratory contamination (Lindstrom et al., 2013) and 

atmospheric transport of Mn-enriched rock varnish 
(Ortiz-Montalvo et al., 2018).

Often, hierarchical sorting algorithms assign particles to a 
single material class in a “greedy” manner, meaning that the 
order of the ruleset has a large influence on the ultimate class 
assignment, with rules encountered early in the hierarchy re-
ceiving elevated priority. The ruleset and hierarchy are deter-
mined manually based on the intended application, which 
can lead to disagreement in the make-up of a sample depend-
ing on the assigned order. In addition, a single class assign-
ment does not allow particles with complex compositions to 
fall into multiple classes, nor does it express relationships be-
tween material classes that are compositionally similar.

One way of understanding relationships in complex sam-
ples is through the calculation of pairwise similarities. For in-
stance, Huber et al. developed a deep-learning similarity 
measure for mass spectra (Huber et al., 2020; Huber et al., 
2021a), which was then applied to predict structural similarity 
in complex mixtures based on tandem mass spectra (Huber 
et al., 2021b). Wei et al. (2022) used predicted similarity 
scores of NMR spectra to identify compounds in mixtures. 
Routh et al. (2023) used the similarity of embedded X-ray ab-
sorption fine structure spectra for the speciation of heteroge-
neous nanocatalysts. Here, we define a multi-modal 
similarity measure between particles examined by APA using 
a few-shot learning (FSL) approach.

Traditionally, neural networks used for classification require 
large, balanced training sets to learn accurate representations 
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of all classes. However, many real-world problems call for deci-
sions on samples whose corresponding class has few or no exam-
ples in the original training set. This is especially true for APA of 
environmental samples (here, we define as mixtures of naturally 
occurring geologic minerals and man-made compounds includ-
ing but not limited to metal alloys, plastics, industrial effluents, 
construction materials, and glass), which can contain particles 
with rarely observed or previously unobserved compositions. 
FSL provides a solution by transforming a multiclass classifica-
tion problem into a binary classification problem, producing a 
similarity score between two samples. FSL networks are more 
dynamic than traditional supervised networks in that they quick-
ly respond to new and unseen samples.

When making predictions on new samples, many FSL ap-
proaches employ a support set, or a pre-collected library of 
known samples. Choosing the appropriate support set re-
quires a predetermined knowledge of the sample composition, 
which is often unknown for environmental samples. To avoid 
the use of a support set, we propose a workflow that compares 
all particles in a sample against one another. The set of similar-
ity scores output by the FSL network represents the complex 
relationships between particles in a sample. Because of the 
combinatorial nature of such pairwise comparison, the result-
ing large set of similarity scores requires an abstract mathem-
atical representation for interpretation.

The set of similarity scores output by our FSL framework 
can be mathematically represented as a similarity graph. 
Graphs have been used to analyze complex relationships in di-
verse domains such as omics data (Berger et al., 2013), chem-
ical reaction networks (Zeigarnik et al., 1996; Craciun & 
Feinberg, 2006), and descriptions of chemical space (Coley, 
2021; Dunn et al., 2022; Scalfani et al., 2022). Similarity 
graph representations are advantageous and ubiquitous across 
data science because they enable graph methodologies that 
perform fundamental analyses, such as clustering or partition-
ing, entity importance ranking, and generating node embed-
dings (von Luxburg, 2007). Crucially, graph analyses can 
utilize not only the local similarity information (i.e., those re-
lated to a single data point) but also relations between data 
points through longer, complex chains. This richer informa-
tion yields additional insights into micro- and macroscale 
relationships in the data. For instance, clusters of overlap-
ping material classes within a sample, as well as potentially 
outlying or misclassified particles, are readily observed. 
The similarity graph formulation also allows quantitative 
analysis of the graph structure, providing a basis for cross- 
sample comparison.

In forensic analysis, APA is used to locate gunshot residue 
in a sample, which provides important trace evidence to sup-
port reconstruction of a crime scene (Shrivastava et al., 
2021). In this work, we demonstrate the utility of similarity 
graphs in APA through examination of a dataset containing 
samples from firearm discharge, firework residue, and auto-
mobile brake dust—the latter two of which are often confused 
with firearm discharge. A multi-modal FSL network that in-
gests both EDS spectra and SEM images from APA data is 
used to produce similarity scores between all particles in a 
sample, which are formulated into a similarity graph. We 
then perform a quantitative analysis on the similarity graphs 
and show that clustering of the computed graph metrics af-
fords complete separation of samples obtained from firearm 
discharge from samples obtained from firework residue or 
brake dust.

Methods
Pairwise Similarity Prediction
Our FSL network aims to predict a similarity score between 
two samples, rather than assigning a discrete class to each in-
dividual sample, through the use of “twin” networks (Figs. 1a, 
1b). To perform pair classification, the data for each particle 
are individually passed through feature extraction layers 
which learn the ideal features to distinguish pairs of different 
classes and minimize difference between pairs of the same 
class. In this work, a 1D AlexNet (Krizhevsky et al., 2017) 
architecture was used for feature extraction from EDS spectra, 
and a 2D AlexNet architecture was used for feature extraction 
from SEM images. The feature vectors are then passed through 
a series of fully connected layers with L2 regularization and 
dropout. Dropout is activated during both training and infer-
ence to reduce overfitting and allow uncertainty quantification 
(Gal & Ghahramani, 2016). The incorporation of dropout un-
certainty in twin networks has precedent in studies of change 
detection in images (Wang et al., 2020) and comparisons of 
tandem mass spectra (Huber et al., 2021b). During training, 
the weights of the shared feature extraction layers, as well as 
the weights of the shared UQNet layers, are updated simultan-
eously, as indicated by double sided arrows in Figure 1a. The 
resultant vectors from each modality are then concatenated in 
the fusion step to produce a single vector per particle. The 
fused vectors are passed into an entropy function, in this 
case, the squared difference. In the single modality case, this 
fusion step is omitted and the UQNet output is fed directly 
into the entropy function. Finally, the entropy scalar is pass 
through the sigmoid activation function to produce a similar-
ity score ranging from 0 to 1.

The FSL network is trained to learn an embedding function 
that maps input examples into a meaningful vector space that 
captures relevant information about the input examples, enab-
ling similarity comparisons between them. The goal of train-
ing is to minimize the binary cross-entropy loss, for which 
we employed the ADAM (Adaptive Moment Estimation) op-
timization algorithm. The binary cross-entropy loss function 
is commonly used in binary classification tasks, as it provides 
a suitable loss metric for evaluating the dissimilarity between 
predicted probabilities and true binary labels. The gradients 
of the loss with respect to the network’s learnable parameters 
are calculated through backpropagation, and the parameters 
are updated in the opposite direction of the gradients to min-
imize the loss. Model training was parallelized across two 
NVIDIA V100 GPUs, an adaptive learning rate beginning at 
0.001 was applied, the batch size was set to 256, and training 
was stopped once the validation loss did not decrease for ten 
consecutive epochs. Dropout was set to 0.3 and applied during 
both training and inference. During inference, ten repeat pre-
dictions were performed for each particle pair to obtain a 
mean similarity score (Fig. 1c).

The final form of a neural network is highly dependent on 
the data used for training, requiring careful curation of the 
training set. Due to the large number of particles measured 
during APA, we apply a set of unsupervised methods to auto-
matically curate the data. First, the isolation forest anomaly 
detection method (Liu et al., 2008), as implemented in the 
scikit-learn library, was used to detect outliers among EDS 
spectra within a material class. Outlier spectra were observed 
to have additional or missing peaks compared with other spec-
tra in the corresponding material class, indicating a difference 
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in elemental composition. Particles with outlier spectra were 
dropped from the training set.

The training set for the FSL network is composed of particle 
pairs. Particle pairs of the same material class are labeled 1, 
while particle pairs of different material classes are labeled 
0. However, some of the material classes are broadly defined 
and may have several subgroups. Therefore, we further 
refined same-class pairs by computing a spectral similarity 
score between pairs of EDS spectra using Spec2Vec (Huber 
et al., 2021a). Spec2Vec was inspired by Word2Vec, a natural 
language processing algorithm that provides similarity scores 
between words in sentences. Spec2Vec transforms peaks in a 
spectrum into a textual representation to compute spectral 
similarity scores based on a learned embedding. Spec2Vec 
was originally developed for metabolomics analyses using 
spectra from tandem mass spectrometry. In this work, we re-
tool their algorithm for use with EDS spectra and trained a 
Spec2Vec network over each material class. Once the 
Spec2Vec scores were obtained for pairs within a material 
class, a threshold was applied based on the q-th percentile, 
and pairs whose Spec2Vec score did not meet this threshold 
were not included in the training set. We found a percentile 
of 2.2 to provide adequate filtering of dissimilar spectra within 
the same material class.

Similarity Graphs
After training, inference is performed over all pairs of particles 
particle pairs in the sample, producing n(n−1)

2 similarity scores, 
where n is the number of particles. Therefore, a 500-particle 
sample would have 124,750 associated similarity scores. A 
mathematically convenient way to represent these data is in 
the form of a similarity graph G = (V, E), where the set of 

vertices V = {v1, . . . , vn} corresponds to the particles in the 
sample and the set of edges E corresponds to the set of pairwise 
similarity scores. When all pairwise similarities are included in 
G, the graph is a “complete graph” and can be denoted Kn. 
Thresholding the graph by removing edges representing simi-
larity scores below a certain threshold value improves visual-
izations of G, as shown in Figure 1d, and supports the 
computation of quantitative metrics describing the graph 
structure.

To calculate structural metrics without employing an arbi-
trary threshold, we employ a scheme that averages over all pos-
sible similarity score filterings. Filtering G is necessary because 
many graph metrics have no natural weighted analog and un-
weighted graph metrics are not meaningful when applied to 
Kn, which always links every pair of particles with a score. 
Accordingly, we filter G by removing edges whose associated 
similarity score value does not meet a specified threshold value. 
Rather than limit our analysis to graphs derived from a single 
threshold, our approach captures how the graph structure 
evolves over all thresholds: we compute the graph metric under 
consideration for each threshold choice, and weight the value 
based on the range of scores for which thresholding yields the 
same graph. More precisely, if the observed similarity scores 
are 0<s1<s2< . . . <sk<1, then for each threshold si,

we 

1. Construct a filtered similarity graph consisting only of 
edges with scores greater than si,

2. Compute the graph metric on this filtered graph, and
3. Scale the output value by (si+1 − si),

repeating and summing this quantity over all observed si. 
McAssey & Bijma (2015) took a similar “weighted average” 

Fig. 1. (a) Key components of the analysis workflow: (a) multi-modal few-shot learning (FSL) network to predict similarity scores between particle pairs, 
(b) training of the FSL network, (c) similarity predictions incorporating model uncertainty, and (d) formulation of a similarity graph from pairwise similarity 
scores.
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approach for computing the graph clustering coefficient on 
similarity data. In practice, however, the number of distinct, 
pairwise similarity scores grows rapidly with the number of 
particles, and it is neither computationally tractable nor neces-
sary to compute each graph metric at each similarity score. 
Instead, we find that choosing 50 equally spaced thresholding 
values—that is, thresholding in increments of 0.02—yields 
sufficiently accurate approximations across the graph metrics 
we consider.

For quantitative comparison of the different graphs, we 
compute a set of graph-level metrics that that provide struc-
tural information about each graph. Macindoe & Richards 
(2010) developed a method for quantitatively comparing 
graphs based on structural features. The metrics described in 
their work—leadership, bonding, and diversity—were tar-
geted toward properties of social networks. Leadership quan-
tifies the level at which a particular node overwhelmingly 
influences the edge connectivity; in our case, a high leadership 
value indicates that a small number of particles have 
higher-than-average similarities to a large proportion of par-
ticles in the sample, while a low leadership value indicates 
roughly equal similarity distributions between particle pairs. 
Bonding is a measure graph transitivity that described the 
overall probability for a network to have adjacent nodes inter-
connected. This metric describes the presence of communities 
within the graph, affording a description of how particles clus-
ter within a sample. Diversity is a normalized measure of the 
number of disjoint edge pairs whose endpoints are not linked. 
This metric explores the separation between communities in 
the graph, in other words, the separation of groupings of simi-
lar particles in the sample. We extend their set of metrics to in-
clude class assortativity, degree assortativity, algebraic 
connectivity, and p-smoothness. Assortativity describes the 
preference for vertices to be linked to other vertices that are 
similar in a defined way. Class assortativity examines this pref-
erence based on material class of the particle, while degree as-
sortativity examines this preference based on number of edges 
connected to the vertex. Algebraic connectivity reflects how 
well connected the overall graph is (i.e., are some populations 
of particles completely dissimilar from others), while 
p-smoothness measures the entropy in the size of connected 
components in the graph (i.e., are these dissimilar populations 
of disproportionate size). We find this set of seven quantitative 
metrics to sufficiently describe various aspects of the particles 
in the sample and their relationship to one another. For the an-
alyzed samples, pairwise correlation coefficients were com-
puted between all metrics to check for redundancy.

Clustering
The seven metrics provide a set of descriptors that can be used 
to group the similarity graphs. In this work, we apply 
Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN), as implemented in the scikit-learn package, as a 
post-analysis tool to confirm our hypothesis that our coupled 
few-shot learning-similarity graph method can be used to 
characterize samples. Density-based techniques (such as 
DBSCAN) tend to be more robust toward arbitrary-shaped 
clusters and have the benefit of denoting outliers that do not 
belong to any detected cluster, compared with partition-based 
clustering techniques (such as k-means) and hierarchical clus-
tering techniques (such as agglomerative clustering). Note 
that, except for that of the noise class, the numerical label of 

the cluster is arbitrary; the important factor is samples con-
tained within each cluster.

Dataset
APA data consisting of SEM images with paired EDS spectra 
were obtained from NIST (Ritchie & Renolds, 2021). Along 
with the raw data, each particle is assigned a material class 
based on a user-defined ruleset that assigns particles according 
to their normalized k-ratios and some numeric morphology 
metrics. The dataset contains 30 APA samples from three 
broad categories: automobile brake dust, firework residue, 
and firearm discharge. The hierarchy of samples is shown in 
Figure 2. Twelve brake dust samples were obtained from all 
four tires of three different vehicles—two Ford Explorers (de-
noted A and B) and one Chevy Caprise. Ten fireworks samples 
were obtained from sparklers, spinners, and Roman candles at 
various collection periods both before and after ignition. Eight 
firearm discharge samples were taken by sampling the hands 
of five volunteer shooters after firing a firearm at a firing range.

The samples were separated into training and analysis sets. 
Samples reserved for the training set included the four tires of 
Ford Explorer A (20,000 particles), all samples collected from 
spinners (20,000 particles), and samples from both hands of 
shooter #3 (51,604 particles). The analysis set contained sam-
ples of brake dust from all four tires of Ford Explorer B and the 
Chevy Caprise (39,999 particles), sparklers and Roman can-
dles (25,247 particles), and firearm discharge from the remain-
ing shooters (111,468 particles). Particles assigned to the 
“Other” material class were removed from the training set, 
due to lack of specificity in the class description, but retained 
in the analysis sets.

Results and Discussion
SEM/EDS is the technique of choice for the detection of inor-
ganic gunshot residue (GSR) in particle samples (ASTM 
International, 2017; Ritchie et al., 2020; Charles et al., 
2023). Both SEM images and EDS spectra are used to support 
a positive indication of GSR particulate through assessment of 
the shape (spheroidal), size (0.5–5.0 μm in diameter), and 
elemental composition (presence of lead, barium, and antim-
ony). Detection is typically performed in two phases: 1) dis-
covery of “GSR-like” particles using APA and automated 
classification and 2) confirmation of GSR via manual re- 
examination of the identified GSR-like particles, often 
through newly acquired SEM images and EDS spectra. The se-
cond step is key to the correct identification of GSR, but re-
quires careful examination by an experienced analyst and 
can be labor-intensive if many GSR-like particles are found.

The changing composition of ammunition, which affects 
both elemental composition and particle morphology, can 
muddle determinations of GSR (Feeney et al., 2020; 
Tahirukaj et al., 2021). Moreover, a recent study of firearm 
gunpowders showed some to be coated with additional ele-
ments, such as chrome, manganese, and iron (Burnett et al., 
2021), further complicating elemental-based determinations 
of GSR. To further confound analyses of real-world samples, 
automobile brake pads can produce particles that are both 
compositionally and morphologically similar to gunshot resi-
due. While modern automotive brake pads produce a small 
number of particles compositionally similar to GSR, these 
“GSR-like” particles are commonly found alongside iron- 
containing particles (Torre et al., 2001; Tucker et al., 2017). 
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The presence of copious iron-containing particles in a sample 
can be used to rule out GSR, but a false negative result may oc-
cur, for example, when sample contains a mixture of brake 
pad dust and low amounts of GSR (Tucker et al., 2017).

Table 1 gives a count of particles labeled GSR for each sam-
ple class (brake dust, firework residue, and firearm discharge) 
for the NIST APA dataset of samples known to have been ex-
posed to gunshot residue and from samples occasionally mis-
taken for gunshot residue (Ritchie & Renolds, 2021) applied 
in this work. Supplementary Table S1 gives the same count 
broken out by specific sample. Notably, each sample contains 
particles labeled as GSR. Surprisingly, the brake dust class 
contains a higher percentage of particles labeled GSR than 
the firearm discharge class (10.0% versus 8.2%, respectively). 

The high count of GSR-like particles in the brake dust class are 
predominately from the two rear tires of the Chevy Caprise, 
which accounts for 36.6% of all GSR-like particles in the 
brake dust class.

In this work, we present an analysis method to discriminate 
firearm discharge from confounding samples that considers 
both GSR-like and non-GSR-like particles. We apply a multi- 
modal neural network that ingests both EDS spectra and SEM 
images and determines a similarity score between pairs of par-
ticles. The set of similarity scores between all particle pairs in 
the sample is formatted into a similarity graph, which wholis-
tically describes the inter-particle relationships in the sample. 
Quantitative graph metrics are computed for each sample, 
and clustering of the metrics allows discrimination of samples 
collected from firearm discharge from those collected from 
brake dust or firework residue.

The SEM images obtained by APA surveys are low reso-
lution and do not provide enough information to categorize 
particles based on morphology. However, the general particle 
shape and brightness, which is related to the atomic number, 
may provide ancillary information to enhance particle similar-
ity predictions. We hypothesize that the addition of SEM im-
ages along with EDS spectra to the FSL network will 
improve particle characterization by enhancing the learned 
embedding with additional information. To confirm this, we 
train two networks: one using only EDS spectra (single modal-
ity network) and one using both EDS spectra and SEM images 
(multi-modal network).

The training set consists of 260,164 pairs of particles, half 
composed of different classes and half of the same class. The 
validation set consists of 32,520 pairs, and the test set consists 

Fig. 2. Hierarchy of sample categories and number of particles contained in the NIST APA dataset. Samples in shaded boxes were used to train the FSL 
network, while samples in the solid boxes were reserved for analysis.

Table 1. Number of Particles Assigned to a GSR Material Class for Each 
Sample Category.

Brake Dust Firework Residue Firearm Discharge

GSR.0 0 0 2,310
GSR.1 23 2 3,381
GSR.2 5,548 544 4,276
GSR.3 0 1 6
GSR.6 4 39 99
GSR.Ba-Sb 77 14 520
GSR.Pb-Ba 235 362 703
GSR.Pb-Sb 1 1 533
GSR.Sr-bearing 154 605 1,471
Total 6,042 (10.0%) 1,568 (3.5%) 13,299 (8.2%)

Also given is the total number of particles labeled GSR in the sample class, 
with the percent of the total sample in parenthesis.
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of 32,528 pairs, both with 1:1 splits. The same training, valid-
ation, and test sets were used in both the single modality and 
multi-modal networks. Training proceeded successfully for 
both networks (Supplementary Fig. S1); however, the multi- 
modal network required more training epochs to converge. 
The networks were considered to have converged when the 
validation loss did not decrease over ten consecutive epochs. 
Initially, the multi-modal network was stuck in a local min-
imum until around ten epochs, which did not occur with 
the single modality network. Training converged at 25 
epochs for the single modality network, with an optimal val-
idation loss of 0.188 and validation accuracy of 94.0%, and 
at 40 epochs for the multi-modal network, with an optimal 
validation loss 0.200 and validation accuracy of 93.8%. 
Receiver operating characteristic (ROC) curves and the cor-
responding area under the curve (AUC) were used to analyze 
model performance through comparison of true positive and 
false positive rates. AUC values range from 0 (all model pre-
dictions are wrong) to 1 (all model predictions are correct). 
ROC curves were calculated for the validation and test sets 
for the trained networks, with both networks giving AUCs 

of 0.98 for both sets. This demonstrates that both networks 
were well-trained.

Inference was performed and similarity graphs were pro-
duced for samples not included in the training set: eight auto-
mobile brake dust, six firework residue, and six firearm 
discharge samples were analyzed. To measure the consistency 
and reliability of the similarity graphs, ten similarity graphs 
were created from 500-particle subsamples of each APA 
scan. The Roman candle debris sample consisted of 247 par-
ticles, and so only a single graph was generated.

Individual similarity graphs provide information on group-
ings of material classes in a sample. Figure 3 shows an example 
thresholded multi-modal similarity graph for each sample cat-
egory. In general, at the 0.8 threshold, the brake dust samples 
show high connectivity among the majority of particles, main-
ly due to the large number of particles containing iron in these 
samples. In contrast, the samples from firearm discharge show 
greater separation between clusters of highly similar particles. 
In the firework residue classes, Roman candles at all collection 
periods and sparklers during burn show separation similar to 
the firearm discharge samples, while sparkler samples taken 
post-ignition and from debris show connectivity intermediate 
to the firearm discharge and brake dust samples. These readily 
observable differences in the graph structure, even at an arbi-
trary similarity score threshold, lead us to suppose that sam-
ples could be grouped according to quantitative metrics 
describing their graph structure.

For cross-sample comparison, we computed a set of graph 
metrics that quantitatively describe the inter-particle relation-
ships within a sample, which are described in the Methods sec-
tion. We hypothesize that these graph metrics can be used to 
minimize the false positive identification of GSR in brake 
dust and firework samples, by associating the inter-particle re-
lationships with the source of a given sample.

The addition of SEM images to the particle description will 
further improve the ability to distinguish GSR-containing 
samples. The similarities derived from the multi-modal model 
capture additional structural information about the particles, 
which increases the reliability of the multi-modal model in 
comparison to the single modality model in distinguishing 
samples that have a true positive identification of GSR. To 
demonstrate the needs for multi-modal similarity graphs, we 
computed graph metrics and perform clustering for on two 
separate groups: 1) graph metrics derived from single modality 
similarity graphs and 2) graph metrics derived from multi- 
modal similarity graphs.

Before applying a clustering technique to the graph metrics, 
we use pair plots to assess the potential of clusters forming. 
Figure 4 shows pair plots of metrics from the multi-modal ana-
lysis, while Supplementary Figure S2 shows the corresponding 
plots for the single modality analysis. In both cases, emergent 
clusters are observed even in pairwise comparisons of the met-
rics. Notably, samples from firearm discharge do not break 
out into separate groups, as is observed for brake dust and fire-
work residue samples. Some metrics distinguish sample classes 
more than others; for example, algebraic connectivity and de-
gree assortativity help to distinguish brake dust from firework 
residue and firearm discharge.

To compare the distributions of single modality and multi- 
modal graph metrics resulting from the single modality and 
multi-modal networks, we computed the Wasserstein distance 
between the distributions for each graph metric across the 
three sample classes (Table 2). The addition of SEM images 

Fig. 3. Thresholded multi-modal similarity graphs (similarity score ≥ 0.8) 
from the three sample classes: (a) break dust from the Chevy’s rear 
driver tire, (b) firework residue from sparklers post-ignition, and (c) 
firearm discharge from shooter #1. Particles assigned to a GSR class are 
circled in red. Nodes are colored according to the material class denoted 
in the color bar. Note that the color map is consistent across samples, 
and not all particle types are present in each graph.

6                                                                                                                                          Microscopy and Microanalysis, 2024, Vol. 00, No. 0
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/advance-article/doi/10.1093/m
am

/ozae068/7724952 by M
SA - M

em
ber Access user on 06 August 2024

http://academic.oup.com/mam/article-lookup/doi/10.1093/mam/ozae068#supplementary-data
http://academic.oup.com/mam/article-lookup/doi/10.1093/mam/ozae068#supplementary-data


had the largest effect on the brake dust class, which showed 
the largest Wasserstein distances for five of the seven metrics 
(bonding, diversity, class assortativity, degree assortativity, 
and algebraic connectivity). The firework residue class showed 
the largest Wasserstein distances for the leadership and 
p-smoothness metrics. Notably, samples from the firearm dis-
charge class showed comparatively smaller changes in graph 
metric distributions.

We then applied the DBSCAN clustering algorithm to both 
sets of single modality and multi-modal graph metrics. 
DBSCAN is an unsupervised technique that clusters data 
into high-density regions clearly separated by regions of low 

density. In this technique, data in the low-density regions are 
categorized as noise. DBSCAN has two tunable parameters: 
epsilon and minimum number of samples. Epsilon is the max-
imum distance between two data points for them to be consid-
ered in the same neighborhood. Minimum number of samples 
is the number of samples in a neighborhood required for a data 
point to be considered a core point (including itself). In this 
work, we used an epsilon value of 0.9 and a minimum samples 
value of 5.

Figure 5 shows the results of clustering the metrics derived 
from the single modality and multi-modal networks; specific 
samples in each cluster are given in Table 3 for the multi- 

Fig. 4. Pair plots of the multi-modal graph metrics for the brake dust (blue), firework residue (orange), and firearm discharge (green) sample classes. The 
plots along the diagonal show the distribution of the corresponding metric.

Table 2. Wasserstein Distances Between the Single Modality and Multi-Modal Graph Metric Distributions for the Brake Dust, Firework Residue, and 
Firearm Discharge Sample Classes.

Leadership Bonding Diversity Class Assortativity Degree Assortativity p-Smoothness Algebraic Connectivity

Brake dust 0.017 0.041 0.043 0.026 0.058 0.004 0.036
Firework residue 0.018 0.014 0.019 0.021 0.037 0.016 0.004
Firearm discharge 0.012 0.006 0.031 0.009 0.039 0.006 0.002
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modal model and Supplementary Table S2 for the single mo-
dality model. From clustering of the single modality metrics, 
three subgraphs from firearm discharge (all from shooter 
#2), two from brake dust (both from Chevy front passenger), 
and two from firework residue (Roman candle pre-ignition 
and Roman candle debris) were classified as noise, while for 
the multi-modal model, only the firework residue class had 
subgraphs classified as noise (three from Roman candle post- 
cleanup, one from Roman candle debris, two from sparkler 
post-ignition, and one from sparkler during burn). The 
247-particle Roman candle debris sample fell into noise for 
both models. Subgraphs that fall into noise are dissimilar 
from any of the identified clusters, indicating that these sub-
graphs are not characteristic of the samples and do not 

support the ability to associate the sample class with the graph 
metrics. With the multi-modal model, all subgraphs that fall 
into the noise category are from the firework residue class, 
and all firearm discharge subgraphs are able to be clustered.

Although clustering with the single modality group pro-
duced a cluster containing the remaining firearm discharge 
samples (N = 57), the cluster was not unique to firearm dis-
charge and included several firework residue samples, specific-
ally Roman candle pre-ignition (N = 9) and Roman candle 
post-cleanup (N = 10). The addition of SEM data in the 
multi-modal group resolved this overlap. Clustering with the 
multi-modal group formed a cluster composed of all shooter 
observations (N = 50). Moreover, this cluster did not include 
samples from any of the other classes, and no firearm 
discharge samples categorized as noise.

In addition, both modalities captured meaningful informa-
tion in the clusters outside of the firearm discharge class. 
The multi-modal group provided additional context with in-
formation on vehicle brand, location of the tire on the vehicle, 
and collection period for the fireworks. In the single modality 
group, Chevy rear driver samples were clustered with the Ford 
rear driver and passenger samples (N = 30). The multi-modal 
model provided better segregation on tire location and vehicle 
brand: the Chevy and Ford samples always fell in separate 
clusters.

In the single modality group, sparkler samples fell into 
separate clusters based on collection period, while Roman 
candles did not. Roman candle samples not categorized as 
noise (N = 2) were clustered with the firearm discharge sam-
ples. For the multi-modal group, the sparkler samples were 
also clustered based on collection period, although some sam-
ples that previously fell into clusters were categorized as noise 
(N = 3). In the multi-modal group, Roman candle samples did 
not segregate by collection period but were no longer clustered 
with firearm discharge samples.

The results DBSCAN clustering of the graph metrics con-
firmed the hypothesis that similarity information can be lever-
aged to identify samples acquired from firearm discharge. 

Fig. 5. Subsample classifications based on DBSCAN clustering of the 
graph metrics for subgraphs of samples using the (a) single modality and 
(b) multi-modal FSL networks.

Table 3. Subsample Classifications Based on DBSCAN Clustering of the Graph Metrics for Subgraphs of Samples Using the Multi-Modal Few-Shot 
Network.

DBSCAN Cluster

Sample Noise 0 1 2 3 4 5 6 7 8 9 10

Chevy front driver 0 0 0 0 0 0 0 1 0 9 0 0
Chevy front passenger 0 0 0 0 0 0 0 10 0 0 0 0
Chevy rear driver 0 0 0 0 0 0 0 0 0 0 0 10
Chevy rear passenger 0 0 10 0 0 0 0 0 0 0 0 0
Ford front driver 0 0 0 0 10 0 0 0 0 0 0 0
Ford front passenger 0 0 0 0 10 0 0 0 0 0 0 0
Ford rear driver 0 0 0 0 0 10 0 0 0 0 0 0
Ford rear passenger 0 0 0 0 0 10 0 0 0 0 0 0
Sparkler during burn 1 0 0 9 0 0 0 0 0 0 0 0
Sparkler post-ignition 2 0 0 0 0 0 0 0 8 0 0 0
Sparkler debris 0 0 0 0 0 0 0 0 0 0 10 0
Roman candle pre-ignition 0 0 0 0 0 0 10 0 0 0 0 0
Roman candle post-cleanup 3 0 0 0 0 0 7 0 0 0 0 0
Roman candle debris 1 0 0 0 0 0 0 0 0 0 0 0
Shooter #1 0 10 0 0 0 0 0 0 0 0 0 0
Shooter #2 0 10 0 0 0 0 0 0 0 0 0 0
Shooter #4 left hand 0 10 0 0 0 0 0 0 0 0 0 0
Shooter #4 right hand 0 10 0 0 0 0 0 0 0 0 0 0
Shooter #5 left hand 0 10 0 0 0 0 0 0 0 0 0 0
Shooter #5 right hand 0 10 0 0 0 0 0 0 0 0 0 0
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Notably, the single modality model failed to isolate the firearm 
discharge samples from Roman candle samples, while the 
multi-modal model succeeded in separation, indicating that 
the inclusion of both EDS spectra and SEM images is necessary 
to accurately describe inter-particle relationships within a 
sample.

Conclusions
APA is used to locate particles that provide support for iden-
tification of the source of a sample. Typically, such particles 
comprise a small proportion of the sample, making this search 
akin to the search for a needle in a haystack. Furthermore, 
changing formulations and compositions complicate the iden-
tification of specific predefined “needles”.

In this work, we demonstrate a method to quantitatively de-
scribe and cluster samples based on characteristics of the full 
particle set measured by APA. Although we provide 
proof-of-concept in the context of identifying firearm dis-
charge, our method can be applied broadly to APA data in 
general. Our combined FSL and similarity graph approach 
was shown to successfully distinguish samples obtained from 
firearm discharge from samples obtained from automobile 
brake dust or firework residue. A multi-modal model that in-
gests both EDS spectra and SEM images was required for com-
plete separation of all firearm discharge samples.

We note that our method is intended to support, rather than 
replace, the analyst, especially in situations with potentially se-
vere real-world consequences. The methods presented should 
only be used to provide further assurance that a correct deter-
mination was made and should not replace or outrank stand-
ard practices.

Availability of Data and Materials
The automated particle analysis (SEM/EDS) dataset (Ritchie 
& Renolds, 2021) used in this study is openly available on 
the NIST website (https://data.nist.gov/od/id/mds2-2476). 
Code necessary to apply our method and support the findings 
of this study is available at https://github.com/pnnl/particlefsl.

Supplementary Material
The supplementary information contains number of GSR-like 
particles for each sample, training results for both FSL net-
works, pair plot of graph metrics from the single modality net-
work, and full results of clustering of metrics from the single 
modality network.

To view supplementary material for this article, please visit 
https://doi.org/10.1093/mam/ozae068.
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