Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. DATA SclI. (© 2024 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, pp. 481-503

Scalable Tensor Methods for Nonuniform Hypergraphs*

Sinan G. Aksoy!, llya Amburg?, and Stephen J. Young'

Abstract. While multilinear algebra appears natural for studying the multiway interactions modeled by hy-
pergraphs, tensor methods for general hypergraphs have been stymied by theoretical and practical
barriers. A recently proposed adjacency tensor is applicable to nonuniform hypergraphs but is pro-
hibitively costly to form and analyze in practice. We develop tensor times same vector (TTSV)
algorithms for this tensor, which improve complexity from O(n") to a low-degree polynomial in
r, where n is the number of vertices and r is the maximum hyperedge size. Our algorithms are
implicit, avoiding formation of the order r adjacency tensor. We demonstrate the flexibility and
utility of our approach in practice by developing tensor-based hypergraph centrality and clustering
algorithms. We also show that these tensor measures offer complementary information to analogous
graph-reduction approaches on data and are also able to detect higher-order structure that many
existing matrix-based approaches provably cannot.

Key words. hypergraph, adjacency tensor, tensor times same vector, tensor-free methods, centrality, clustering
MSC codes. 05C65, 15A69, 05C50, 05C85

DOI. 10.1137/23M1584472

1. Introduction. The study of hypergraphs is fraught with choices of representation.
From Laplacians [13, 15, 46, 55|, to probability transition matrices [16, 17, 25], to variants of
incidence and adjacency matrices [2, 14, 37|, there is no shortage of proposed hypergraph data
structures. Despite these options, selecting among them can be challenging, as each comes
with significant and sometimes nuanced limitations. For example, adjacency, random walk,
and Laplacian matrices are typically lossy in that they only contain information about the
hypergraph’s clique expansion graph, thereby losing the information encoded in higher-order
interactions [1, 25]. In contrast, rectangular incidence matrices faithfully model hypergraphs
but have analytical limitations: for instance, their singular values reflect information about
the weighted line graph and clique expansion reductions, which do not uniquely identify the
hypergraph [30]. Arguably, these challenges stem from mismatching hypergraphs, models of
higher-dimensional relationships, with two-dimensional arrays.

“Received by the editors July 6, 2023; accepted for publication (in revised form) February 15, 2024; published
electronically June 11, 2024. Authors listed in alphabetical order.
https://doi.org/10.1137 /23M1584472
Funding: The authors gratefully acknowledge the funding support from the Applied Mathematics Program within
the U.S. Department of Energy’s Office of Advanced Scientific Computing Research as part of Scalable Hypergraph
Analytics via Random Walk Kernels (SHARWK). Pacific Northwest National Laboratory is operated by Battelle for
the DOE under contract DE-AC05-76RL01830. PNNL Information Release: PNNL-SA-186918.
TPacific Northwest National Laboratory, Richland, WA 99352 USA (sinan.aksoy@pnnl.gov, stephen.young®
pnnl.gov).
Corresponding author. Pacific Northwest National Laboratory, Richland, WA 99352 USA (ilya.amburg@
pnnl.gov).

481

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/23M1584472
mailto:sinan.aksoy@pnnl.gov
mailto:stephen.young@pnnl.gov
mailto:stephen.young@pnnl.gov
mailto:ilya.amburg@pnnl.gov
mailto:ilya.amburg@pnnl.gov

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

482 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Tensor arrays, therefore, appear a natural choice for hypergraph-native analyses. However,
their application in the hypergraph setting poses immediate conceptual and computational
challenges. A primary theoretical barrier is that nonuniform hypergraphs do not afford an
obvious tensor representation. For this reason, despite real hypergraph-structured data nearly
always exhibiting hyperedges of varying sizes, much of the existing tensor literature on hy-
pergraphs is limited to the uniform case [10, 11, 47|, relies on augmenting the hypergraph
with auxiliary nodes [42, 54], or synthesizes a collection of differently sized tensors for each
hyperedge size [29]. One notable exception of using tensors to directly study nonuniform hy-
pergraphs, however, is the adjacency tensor recently proposed by Banerjee, Char, and Mondal
[6]. Loosely speaking, this tensor encodes nonuniform hyperedges by “inflating” each to the
maximum hyperedge size r. This yields an order r, n-dimensional tensor, where n is the num-
ber of vertices. Consequently, the nonuniform adjacency tensor solves a conceptual challenge
but poses a computational one: its explicit formation and analysis are intractable for nearly
any hypergraph data with nontrivially sized hyperedges, since fundamental tensor operations
like tensor times same vector (TTSV) have cost O(n").

In this work, we focus on ameliorating these computational challenges to enable use of
the hypergraph adjacency tensor in practice. Our main focus is creating efficient algorithms
for TTSV. In particular, we drastically speed up the tensor times same vector in all modes
but one (TTSV1) operation from O(n") to a low-degree polynomial in . We perform an
analogous speedup for tensor times same vector in all modes but two (TTSV2) using an
approach that easily generalizes to tensor times same vector in all modes but k& (TTSVK).
Moreover, our methods are implicit and tensor-free, avoiding formation of the costly order-r
tensor. We achieve these improvements using combinatorial methods that exploit the nuanced
symmetry of the hypergraph adjacency tensor. We derive best- and worst-case complexity
bounds of our algorithms and supplement these analytical results with timing experiments on
real data.

Since TTSV is a workhorse in many tensor algorithms such as canonical polyadic (CP)
decomposition and tensor eigenvector computation [8, 9, 10, 11, 32, 33, 48], our algorithms
enable a host of tensor-based hypergraph analytics. We illustrate this by proposing simple
tensor-based centrality and clustering algorithms where T'T'SV is the primary subroutine. For
centrality, we apply recent nonlinear Z- and H-eigenvector formulations [8] to nonuniform
hypergraphs, whose existence is guaranteed by the Perron-Frobenius theorem for tensors [45].
For clustering, we outline an approach that uses fast CP decomposition to obtain an embedding
for the hypergraph, which is then fed into k-means [24], or any metric space approach, for
clustering. We then study these measures experimentally, showing each offers complementary
node importance information on data. Moreover, we show that these tensor measures detect
differences in structured hypergraphs with identical underlying graph information, as given
by their weighted clique and line graphs. In contrast to many existing hypergraph methods,
this means tensor approaches enabled by our algorithms analyze multiway interactions in
hypergraph data directly—without reducing them to groups of pairwise interactions modeled
by graphs.

The paper is structured as follows: Section 2 reviews the necessary preliminaries. Sec-
tion 3 presents our algorithms for TTSV1. As the details of the algorithms and analysis for
TTSV2 are similar to that of TTSV 1, we defer their discussion to section SM1 of the supple-

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 483

mentary material. Section 4 applies these algorithms to develop a tensor-based approach for
nonuniform hypergraph centrality and clustering. Section 5 concludes and highlights avenues
for future work.

2. Preliminaries. A hypergraph H = (V,E) is a set V of n vertices and a set E of m
hyperedges, each of which is a subset of V. The degree of a vertex v and hyperedge e is
d(v) =|{e € E:v € e}| and d(e) = |e|, respectively. The rank of a hypergraph is max, d(e),
and if d(e) =k for all e € E, we call the hypergraph k-uniform. The volume of a hypergraph
is Vol(H) =}, cyyd(v) = .cpd(e). The set of hyperedges to which v belongs is denoted by
E(v), while E(u,v) denotes those to which both v and v jointly belong. The clique expansion of
a hypergraph (V, E) is the graph on V with edge set {{u,v} € V XV :u,v € e for some e € E}.
For more basic hypergraph terminology, we refer the reader to [2, 12].

A tensor of order r is an r-dimensional array. Lowercase bold letters denote vectors, e.g.,
a, while uppercase bold letters in regular and Euler script denote matrices and tensors, e.g.,

X and X, respectively. For a tensor X, the value at index 41,...,17, is given by &X;, ;. In
general, we assume the vertices of a hypergraph are indexed by [n] ={1,...,n} and that each
index in a tensor X has n components, i1,...,7, € [n]". The notation afl. aob,andaob

denote the elementwise power, product, and division operations, respectively. Following stan-
dard notation from generating functions (see, for instance, [53]), we will denote the coefficient
of t" in the generating function f(¢) by f[t"]. Lastly, we use Bachmann-Landau asymptotic
notation. Our algorithm complexities are multivariate and depend on the rank r, number of
hyperedges m, and volume Vol(H) of the hypergraph H.

Tensors have long been used to encode adjacency in uniform hypergraphs. In particular,
a rank r uniform hypergraph’s adjacency tensor is order r with

Aﬂh...,v,,:{w if {Ula-..,UT}EE’

0 otherwise,

where w refers to a chosen weight, such as w =1 or 1/(r—1)!. Recently, [6] generalized this to
nonuniform hypergraphs. Underlying this definition is a concept we call hyperedge blowups.

Definition 2.1. Given a hyperedge e of a rank r hypergraph, we call the sets
Be)={i1...ir €€": for each v €e, there is j such that i; =v},
k(e) ={x:x is a size r multiset with support e}

the “blowups” and “unordered blowups” of hyperedge e, respectively.

For example, for e ={1,3} in a rank 3 hypergraph, we have
Ble) ={(1,1,3),(1,3,1),(1,3,3),(3,1,1),(3,1,3),(3,3,1)},
k(e)=4{{1,1,3},{1,3,3}}.

The nonuniform hypergraph adjacency tensor [6] places nonzeros in positions corresponding
to blowups of hyperedges, with values weighted by the size of that hyperedge’s blowup set.

Definition 2.2 (nonuniform hypergraph adjacency tensor [6]). For a rank r hypergraph, its
adjacency tensor A is order r and is defined elementwise for each hyperedge e,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

484 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Apl...pT _ {we Z‘fpl .- -.pr S ﬂ(e),

0 otherwise,

where we denotes a chosen hyperedge weighting function.

We note that while [6] takes w, = | B|(|)| so that TTSV1 with the all-ones vector yields the
degree sequence, our algorithms will not require this choice. Furthermore, in addition to adja-
cency tensors, our methods also easily adapt to the Laplacian tensors in [6], as we illustrate in
section 4.3. Lastly, a different approach to building nonuniform hypergraph adjacency tensors
relies on inserting copies of an auxiliary “dummy” vertex within each hyperedge [54], rather
than using those already present in the hyperedge via blowups. While we focus on the blowup
approach, our algorithms easily adapt to this case as well. The T'T'SV operations we tailor for
A form the backbone of many tensor algorithms such as tensor decomposition [32, 33, 48] and
eigenvector computation [8, 9, 10, 11] and are defined in general as follows: given an order r

tensor X and a vector b € R”, Xb"~! € R" denotes the TTSV1 operation given by

(2.1) Xb"] Z ZX“,...,,.Hbzk,

1o=1 1.=1

and TTSV2, denoted Xb"~2? € R™*", is given by

(2.2) [xb?], Z ZX ¥ Hb“

iz3=1 1,.=1

Given the TTSV2 matrix, the TTSV1 vector is easily obtained through right-multiplication by
b. However, whenever the full TTSV2 is unnecessary, it suffices to compute TTSV1 directly.
Lastly, we note that computing TTSV without explicitly forming the tensor is an example of
an implicit tensor operation and has been recently studied in the context of moment tensors
of Gaussian mixture models [43, 48].

3. Tensor times same vector for hypergraphs. We now develop efficient, implicit TTSV
methods for analyzing the hypergraph adjacency tensor .A. Rather than explicitly construct-
ing, storing, or accessing elements of A, our algorithms directly facilitate tensor operations
on the input hypergraph. We divide our work into two approaches: first, we present simple
algorithms which achieve speedup over the naive approach by leveraging several combinatorial
observations on the unordered blowups discussed in Definition 2.1. Then, we further improve
upon these algorithms by using generating function theory. Code for our TTSV algorithms is
available at https://github.com/pnnl/GENTTSV, in Python for hypergraph libraries Hyper-
NetX [44], HypergraphX [38], and XGI [36], and Julia for SimpleHypergraphs [4].

3.1. Unordered blowup approach. This approach for computing TTSV1 for A will use
the following basic combinatorial facts.

Lemma 3.1. Let e = {v1,...,vx} be a hyperedge of a rank r and B(e) and k(e) as defined
in Definition 2.1. Then the following hold:

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://github.com/pnnl/GENTTSV

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 485

(a) |B(e)|=le|!- {\ZI}’ where {‘Z‘} denotes the Stirling number of the second kind.'
-1
(b) [s(e)] = (5¢))-
(c) For given vertices u € e and x € k(e), the number of blowups i1, ...,i, € f(e) that have
support equal to that of x with i; =wu is given by the multinomial coefficient
r—1

d1(x,u) = (mx(m),m,mx(u) - 1,...,mx(vk)>’

where my(w) denotes the multiplicity of node w in x.

TTSV1-UNORD presents the algorithm for the unordered blowup approach. The main
idea is to exploit the nonzero pattern in A. Recalling that i1 corresponds to a node index
when applying the TTSV1 vector given in (2.1) to A, the only nonzeros that contribute
to the sum for this component correspond to blowups of all hyperedges to which node i
belongs. This observation significantly reduces the cost of TTSV1 from the naive O(n")
approach in the absence of the special structure induced by the hypergraph and leads to a
less naive algorithm: for every vertex, iterate through its hyperedges and update the sum over
all elements of the corresponding blowups. However, this approach still requires explicitly
enumerating blowups, which is extremely costly. Instead, TTSV1-UNORD only considers
unordered blowups. By Lemma 3.1(c), there are exactly ¢1(z,v) many blowups with v in
a fixed position that correspond to a given unordered blowup = € k(e). The correctness of
TTSV1-UNORD immediately follows. We note the cost savings here occurs per hyperedge,
yielding speedups of several orders of magnitude for real datasets with larger r.

Proposition 3.2. Let H = (V, E) be a rank r hypergraph with m edges. Then TTSV1-Unord
runs in time O(_ . 7lel (TT:|€13|)). Let € = min{ VOLSH) 11— VO;SH) }; then this running time is at
least

Q (r2m) and at most O(emr3/227">)

TTSV1-UNorD: TTSV1 via unordered blowups
Data: rank r hypergraph (V, E,w), vector b
Result: Ab" ' =s
for veV do
c<—20
for e € E(v) do
for x € k(e) do

$1(z,v)
c+= welT Hb“

v

UET
end

end
Sy < C
end
return s

' An explicit formula for Stirling numbers of the second kind is {}} = % Zfzo(fl)i(’?) (k=)™

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

486 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Proof. Calculate the innermost terms of the sum runs in ©(r); thus the runtime is
1
Y Ten-X¥ ¥ en-Ye(rk(7))
veV e€E(v) z€k(e) e€E vEe xek(e) eel

Thus, we have that the runtime is completely determined by the sizes of the edges of H.
Now, noting that, by algebraic manipulation, we have that r]e](:qil) = |e[2(‘2|), we define
f:{2,...,r} > Nby f(k)=k?(}). We observe that

fle+1) (B+12(1) (+1)%K(r—k)! k+1r—k
fRy k() RE+FDI—k-1! &k kO

Thus the maximum of f occurs at £* = [5] + 1 and f is monotonically increasing below k*
and monotonically decreasing above k*. As f(2), f(r) € ©(r?), we have that the runtime of
TTSV1-Unord is bounded below by ©(r?m).

For the upper bound, let eq,..., e, be a sequence of integers such that), e; = Vol(H)
and), f(e;) is maximized. By the monotonicity of f, either e; <k* for all i or e; > k* for all
i. Let C' = [2y/r] and suppose k and /¢ are such that |k — k*|,|¢ — k*| > C; then we have

J0)+ 1) _FQ+EQ) 2 0 (F) k)
£ (k") (E2(L) — (B92(L) — (kR =O)(r—k+CO)!
kO

ZSH
j=1

* C
cg(
- (rk*+C’>

* C

8 1_7’—2k +C

r—kx+C

C
§8<1?_1)
5+C

< 8exp (—W) <1.

r—k*4+j

This implies, by the maximality of ey,..., e, that ¢; € {2,r} U [k* — C,k* + C] for all i.
Further, since f(k)=O(f(k*)) = O(r"/>2") for all k* — C' < k < k* + C, this gives the desired
upper bound on the runtime of TTSV1-Unord. |

3.2. Generating function approach. The runtime of TTSV1-UNORD is dominated by
the innermost loop, iterating over unordered blowups k(e) for all edges e. Indeed, for most
real datasets, where the size of a typical edge is much smaller than the largest edge, this is
a significant bottleneck as the size of this set scales exponentially with the size of the edge,
i.e., |k(e)|=O(rl¢l). However, by taking a generating function approach the inner loop can be
considerably simplified and accelerated. To illustrate this, consider the summation over the
inner loop for the case when e = {u,v} € E(v):

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 487
(x,v) We =
ky, r—1—k, kutr—ku
S T
zEn({u,v}) i€x ko=

r—1
(r—1)! kypr—1—k,
=we y -~ by

= R (r—1—Fky)
- 1 1
* — 1 Cpke b prel—ke
() we(r) kzl ku' u (T— 1 _ku)‘ v
We note that the summation in (*) can be viewed as a convolution of two sequences
1 1 1 1
1 r—1 0 1 2 r—1
0, bu,z‘ o e T alov, T L e L

Alternatively, if we define u,(t) = 22711 Hbktk and v, (t) = Zk “o ;bhtF, the summation (*)
may be thought of as the coefficient of t"~! in w,.(¢)v.(t). Recall that the coefficient of ¢" i
the generating function f(¢) is denoted by f[¢t"]. In fact, for any d > 0 the summation is equal
to (Upiqvr1q) [t""1], and thus taking

o o
Lo kk k ok
:ZHbut =exp(byt) —1 and wo(t Z b t" = exp(byt),
= k=
we have that (uv)[t"~!] is the value of the inner sum for an arbitrary choice of largest edge
size r. This argument may be easily extended to an arbitrary edge {v,u1,...,up} =e € E(v)
by noting that the contribution to the inner sum by blowups of e with k, copies of v and
ki,...,ke copies of uq,...,uy is given by
¢

)4 k;

(T - 1)! k k. bk b’

we——————by" | [by =wg(r— 1)1 L,
(ko) T (k) f:[(ko)t L5 (k)

Now by summing over valid choices of k, and k1,..., ks, we get that the total contribution of
the inner loop from the edge e is given by

r——0—1 bk” l bkj
e(r—1)! Z Z (k)IH(]{3|
ky=0 1<k;<r—£ ‘Y77 j=1\"
k. +Z kj=r

As above, if we introduce the variable ¢, this can be viewed as the coefficient of t"~! in a
generating function, specifically

0o bk”tk V4
(r—1)! Z > H [tr=1.
ky=0k1,....k;=1 j=1

Thus, by interchanging the products and summations we have that the inner sum in
TTSV1-UNORD is given by

we(r— 1! | exp(byt) [(exp(but)—1) | ["'].

uce—{v}

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

488 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Alternatively, the expression for the inner sum can be derived analytically from the gen-
erating function representation for TTSV. Specifically, using the same approach as above, we
have that

Xb" = (Z wer! H(exp(bvt) — 1)) [t"].

ecE vee

Since, as shown in [34, Lemmas 3.1 and 3.3] for K = 1 and 2, any symmetric tensor X and

vector b satisfy V¥ (Xb") = O«%&g)!XbT_k, and we have that
Xb k= (Z we(r — k)IVF H(exp(bvt) - 1)) [t k).
e€El vEe

For example, the (u,u) diagonal terms of TTSV2 are given by

2
(Z we(r — 2)1% (exp(byt) — 1)) [t"2

ecE U pee

= Z we(r — 2)exp(byt) H (exp(byt) — 1) | [t"?].

ecE(u) ve€e—{u}

While this generating function simplifies the exposition of these algorithms, in practice we
require an efficient means of extracting the appropriate coefficient from the generating func-
tion. Accordingly, we present two different options for evaluating the generating function ap-
proach, a subset expansion approach, SUBSET-GEN, which runs in time O ((|e| + logy(r)) 2|€|),
and a modification of the fast Fourier transform (FFT) [20] approach to polynomial multipli-
cation, FFT-GEN, which runs in time O(|e| rlogy(r)). We note that the runtimes of these two
algorithms are asymptotically equivalent for edges of size log,(r) + logs logy(r) + O(1), with
SUBSET-GEN asymptotically faster for smaller edges and FF'T-GEN asymptotically faster for
larger edges. For convenience, we assume that all edges of size at most logy(r) + logy logs(7)
are evaluated using SUBSET-GEN and larger edges are evaluated via FFT-GEN. Figure 1

924

741

56 1

lel

38

20 A

subset expansion faster

2 20 38 56 74 92
r

Figure 1. Efficiency of FFT versus subset expansion for generating function evaluation.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 489

plots the edge size region where subset expansion outperforms FFT (and vice-versa). It is
interesting to note that difference in runtimes between the two approaches can be understood
by which computationally efficient subroutines are being used. For instance, FF'T-GEN relies
on the FFT as a computationally efficient subroutine and as a consequence must take the
time to form all the degree r polynomials associated with the edge e and operate on these
polynomials (which are larger than the original edge). In contrast to this approach, SUBSET-
GEN relies on the fact that arbitrary coefficients of exponential generating functions can be
efficiently evaluated. In particular, SUBSET-GEN relies on the fact that e® Hle (ebit — 1) can
be expanded to

et Z (_1)‘§‘ H ebst — Z (_1)k7\3\e(a+zsesbs)t.

SCIH ses SClk]

The t" coefficient of each of these summands can then be trivially evaluated. Thus, there is
an exponential dependence on the edge size and minimal dependence on the maximum edge
size 7.

While not explored in this work, we note that further asymptotic speedups are possible
by hybridizing these two approaches. Specifically, by partitioning the edge e into small sets
el,...,ex of size approximately log log(r), the full generating function for these can be calcu-
lated for the sets individually using a variant of the SUBSET-GEN approach, and then this set
of generating functions could be combined using the FFT.

Proposition 3.3. Let H = (V, E) be a rank r hypergraph with m edges, and let k* =logy(r)+
log, logy (7). The asymptotic runtime of TTSV1-GEN is given by

E le] 2lel logy(r) + E \e|2 rlogy(r).
eckE eckE
le|<k* le|>k*

FFT-GEN: FFT evaluation of generating MULTFFT: Multiplication using the FFT
function

Data: polynomials f(¢) and g(t)

Data: a,by,...,bp € Rand r e N. Result: f(t)g(t)
1
Result: (exp(at) [[(exp(bit) — 1) | [t'] c(t) < FFT~(FFT(g(t)) © FFT(f(t)))
; return c(t)
T a]
[Z ?tj
for Z=_0 1,....k do SUBSET-GEN: Subset enumeration evalua-
roag tion of generating function
9‘7_1}1“ Data: a,by,...,by € R and 7 € N
f <—jMULTFFT(£.9) Resglt: (exp(at) T, (exp(bit) — 1)) [t"]
T C <
fe 0 1Y for S < [k] do
| = (15 (a4 Does)
end end
return f[t"] return ¢/r!

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

490 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

If, in addition, the average hyperedge size d = % s such that there is some constant € >0

such that 2+ € <6 < (1 —¢€)r, TTSV1-GEN runs in time at least

Q (Vol(H)2% logy(r)), § < 3k*,
Q (Vol(H)2(=oM)og,(r)), 1k* <5 <k*,
Q (Vol(H)érlogy(r)), k* <4,
and at most
O(r2 log,(r) Vol(H)) .

Proof. As in the proof of Proposition 3.2, the runtime depends on the hyperedge size
sequence, yielding ©() . |e|h(|e|,7)), where h(k,7) is the runtime of extracting the coefficient
of "~! in the generating function associated with an edge of size k. If, for every edge, we use
the faster of FF'T-GEN and SUBSET-GEN, this gives that

h(k) 10g2("ﬂ)2k7 k S k*7
77’ =
krlogy(r), k*<k.

As the shape of the edge size distribution has different effects for “small” edges (those of
size at most k*) and “large” edges (those with size at least k*), we consider each of these
distributions separately. To that end, let mg be the number of small edges, and let mg be
the number of large edges, with dg and dr denoting the respective average edge sizes. We
note that m = mg + mp and dgmg + dpmp = Vol(H) = dm. We first note that by standard
results, the runtime for large edges is minimized when all edges have the same size, dp, and
maximized when all edges have size either k* or r.

We now consider the extremal runtimes for the small edges and show that local modifica-
tions of the edge sizes will lead to both extremal runtimes. In particular, let e and f be small
edges such that |e| + 1 < |f| < k*; then

e[h(le[,r) + |fIR(If],7)
logs ()

= le]2H+ |12V

= (Jel + 1) 21 (] = 1) 20171 — (e +2) 281+ (|] + 1) 2112
> (le] +1) 21t 4 (|| = 1) 21
(lel+ 1) Ale] +1,r) + (If[= D A(SI = 1,7)
logy(r)
As a consequence, the runtime of the small edges is minimized when all mg of the edges have
the same size, dg, and it is maximized when every small edge has size either 2 of k*.
Thus, the maximum total runtime is at most
(r—0)m— (r—k*)my (6 —2)m — (k* —2)my,
r—2 r—2 '
where my, is the number of edges of size k*. As the coefficient on m; in this expression is

asymptotically negative, this is maximized when my is 0, that is, when the only edge sizes are
either 2 and r, and thus the asymptotic runtime is (12 logy(r) Vol(H)).

8logy () + (k:*)2rlog2(fr)m/rc +73 log, (1)

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 491

To address the minimum runtime, we recall from above that the runtime is minimized
if all the small edges and all the large edge have the same size. For notational convenience,
we define Vg = dgmg and Vrp = dpmp as the volume of edges which are processed by subset
expansion and FFT, respectively. Then, the asymptotic runtime is given by

Vs Vi \ 2
Vg2ms logy(r) +mp <mF> rlogy(r) = V5255 logy (1) + VEdprlogy(r).
F

Now suppose that VF/Vol H € Q(1). Then, as dr > §, we see that

Vidprlogy(r)
Vol(H)drlogy(r)

€Q(1).

In particular, this implies that the only case where the runtime is o(Vol(H)drlog,(r)) is when
Vs =(1—0(1)) Vol(H) and 6g = (1 —o0(1))d. As ds < k*, this implies that if 6 > k*, then the
minimal runtime is Q(Vol(H)J).

We note that we may view Vg and Vi as functions of §g and d, yielding

mdx — Vol(H)
O —ds

Vol(H) — mdg

F—n 6% logy (r).

f(0s,0p) = 852° logy(r) +

It is a straightforward, albeit tedious, exercise to show that, taken as a function of dp, f
is minimized when 07 takes the value

/ 20s
= 1-— < 20g.
5F ds + g Sar = dg

In particular, this implies that if dg< %k* (equivalently, if § <k*), then the minimum runtime is

© <V01(H)25 log2(7')> .]

We note that the gap between upper and lower runtime bounds for TTSV1-GEN and
TTSV2-GEN is on the order of 7/§ and (7/§)?, respectively. This is, in a sense, the best
possible gap, as it represents the ratio between the maximum and minimum second and third
moments, respectively, of edge sizes for a fixed average size. In practice, these moments govern
the runtime for these algorithms up to a multiplicative function based on the max edge size 7.

4. The hypergraph adjacency tensor in practice. We explain how to use our TTSV
algorithms to perform fundamental hypergraph analyses, which we then apply to the datasets
listed and summarized in Table 1. In particular, we focus on algorithms for computing tensor
eigenvector centralities, as well as a CP-decomposition approach for performing tensor-based
hypergraph clustering. Our study here is meant to be illustrative rather than exhaustive:
TTSV algorithms find far-ranging application in tensor computation beyond these two tasks.
While our goal is not to argue that the specific centrality and clustering algorithms we propose
are the best of their type, we show they provide complementary information to graph reduction
approaches performed on the clique expansion, and provide a concrete example to illustrate
that they detect subtle, higher-order structure in hypergraphs that a wide variety of popular,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

492 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG
Table 1
Summary statistics of datasets.

Dataset Ref. V| |[E| 6 Vol(H) r 10 > /
mathoverflow [51] 738K 54K 24.2 132K 1.8K .

filtered 39.8K 5.2K 11.3 58.8K 100
MAG-10 [3, 49] 80.2K 51.9K 3.5 181K 25 6 T athoverfiow
DAWN 3] 21K 87.1K 3.9 343K 22 —+— DAWN
cooking 3] 67K 39.8K 10.8 429K 65 A 1 e ins
walmart-trips [3] 88.9K 69.9K 6.6 461K 25 [- rhvagclicks
trivago-clicks [18] 173K 233K 3.1 726K 86 2| § o maromrevions
stackoverflow [51] 15.2M 1.1M 23.7 26.1M 61.3K ko

filtered 7.8M 1.0M 10.1 10M 76 2 17 3 47r 62 77 92
amazon-reviews [41] 2.3M 4.3M 17.1 73.1M 9.4K

filtered 22M 3.7M 9.6 35.6M 27

Figure 2. § versus r.

existing matrix-based methods provably cannot. Taken together, this suggests that the tensor
approaches enabled by our algorithms are flexible, tractable, and worthwhile avenues for
nonuniform hypergraph data analysis. Before proceeding, we compare the empirical runtimes
of the aforementioned TTSV algorithm variants. All experiments were run on a single core
of a MacBook Pro with an M1 Max processor and 32 GB of RAM.

4.1. Timing experiments. We compare the empirical runtimes of TTSV1-GEN and
TTSVI-UNORD against two baselines: ezplicit, in which A is constructed explicitly and
TTSV1 is computed from definition, and ordered, which is identical to TTSV1-UNORD ex-
cept that it iterates over full blowup sets (e) rather than x(e). To study scaling in hypergraph
rank, we increase r from 2 up to a maximum of 100 or the largest hyperedge size,’
the execution timeout of one hour. This procedure corresponds to the “less than or equal
to” (LEQ) filtering discussed in [35]. With this scheme, we are able to process MAG-10, DAWN,
walmart-trips, cooking, and trivago-clicks in their unfiltered entirety, mathoverflow un-
til » = 100, to guard against floating-point errors, and stackoverflow and amazon-reviews
until timeout at » =76 and r = 27, respectively.

Figure 3 presents the TTSV1 results for all datasets in Table 1. Similar results for TTSV2
are reported in Figure SM1 of the supplementary material. Missing times indicate the algo-
rithm either timed out after an hour or forced an out-of-memory error. For all datasets, the
explicit algorithm becomes intractable after » > 3. The separation between the green and blue
lines attests to the significant speedup from considering only unordered blowups. Furthermore,
TTSV1-GEN provides additional speedup many orders of magnitude over T'TSV1-UNORD,
even for modest values of r. For example, in mathoverflow, the speedup at » =9 is about an
order of magnitude and increases to about three orders of magnitude by r = 18.?

or until

2See section SM2 of the supplementary material for further discussion of numerical considerations.

30ur implementation utilizes two heuristic approaches, which, while not affecting the asymptotic analysis,
result in significant performance gains: for sufficiently small » we use a direct convolution approach instead of
the FFT [27, 52], and for edges of size r we use a direct approach identical to the uniform hypergraph case [7].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 493
103,
103/ 1031 1034
1021
102 1024 1024
101,
10%4 10% 1014
10°4 1094 1004 1091
v od mathoverflow o4 MAG-10 0! DAWN cooking
; 2 4 8 16 32 64 2 4 8 16 2 4 8 16 2 4 8 16 32 64
€
=
103’ 103, 103,
2]
10 102, 102’
1]
10 10t
1014
100’ 100,
0l walmart-trips trivago-clicks stackoverflow amazon-reviews
2 4 8 16 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16

r
—— explicit —=— ordered —e— unordered —+— gen. FFT

Figure 3. Runtimes of TTSV1 algorithms.

Having established the superiority of T TSV 1-UNORD, we study its performance on the
hyperedge level as a function of hyperedge size and r. We select DAWN and cooking, as their
hyperedge distributions differ substantially. Figure 4 presents timing results for TTSV1-GEN,
as well as the hyperedge size distributions. For DAWN, the bulk of the compute time for most
values of r is spent on edges with sizes 3 < |e| <6, yet the per-hyperedge runtime for edges in
this range is relatively fast. These observations are reconciled by the fact that the edge degree
distribution is right-skewed. For cooking, the edge size distribution is even more right-skewed,
but also has a mode at |e] =9, exceeding that of DAWN, which is 3. As a result, most of the
runtime is concentrated around edges of size 8 < |e] < 17. However, the per-edge runtime is
still dominated by the larger edges for higher values of r. Note that many edge sizes beyond
36 are not present in the dataset, yielding the white striations in the runtime plots.

4.2. Centrality. Our TTSV algorithms may be utilized to compute nonlinear hypergraph
centralities. Here, we discuss several such centrality measures in the nonuniform setting,
apply the relevant Perron—Frobenius theory guaranteeing their existence, and then compute
them® on data and illustrative toy examples to show they yield meaningful, complementary
information to existing centrality measures. We focus on the tensor-based Z-eigenvector
centrality (ZEC) and H-eigenvector centrality (HEC) introduced by Benson [8] for uniform
hypergraphs. Here, the centrality ¢, of node u depends on the sum of products of its neighbors’
centralities. Using the formalism of hyperedge blowups, we note that this same concept may
be applied to nonuniform hypergraphs where ZEC and HEC satisfy

*Our centrality code is available at https://github.com/pnnl/GENTTSV.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://github.com/pnnl/GENTTSV

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

494 SINAN G. AKSQY, ILYA AMBURG, AND STEPHEN J. YOUNG
DAWN, TTSV1 DAWN, TTSV1 DAWN
1.2 1.6e-04 ...
“ 104 °
[0) []
0.95 1,2e-04§= ..
£ g’. § 10° .°o°
0 6% 8.0e-05_§‘ 3 000®
8 5w
0.3 4.0e-05§ 000®
= 10!
[]
2 6 10 14 18 2 6 10 14 18 2 6 10 14 18 22
r r le|
cooking, TTSV1 cooking, TTSV1 cooking
62 . 10.0 62 " —_
. 4.5e-04 L 10° :
- . Py
4 e s Y . g .« %
pet 2
g 3.0e-04 8 § 10 S
50 2 2 3 “
2 g 10
= 1.5e-04 o
25 £ qo. o
100 e o 00
32 47 62 32 47 62 2 17 32 47 62
r r le]|

Figure 4. Total (left) and per-edge (middle) runtimes for hyperedge size |e| as a function of rank r, and
hyperedge size distributions (right) for DAWN and cooking.

Z Z é H Cv| =)\C'UJ
e€E(u) z€pB(e) - vET !

2 2 | lle]=ra
ecE(u)zef(e) L veExT

respectively. Note that these differ in that the second preserves dimensionality on both sides
of the equation. Both of these problems can be cast as eigenvector problems whose existence,
as we soon show, is guaranteed if the hypergraph is connected.

Definition 4.1 (Z- and H-eigenvector centrality (ZEC and HEC)). Let H be a connected, rank
r hypergraph with adjacency tensor A. The Z- and H-eigenvector centrality of H is given by
a vector ¢ with ||c||1 =1 satisfying

Ac’ ! = \c,
Acr—l _)\c[r—l}’

respectively, for some eigenvalue A > 0.

While the basic pattern of nonlinearity afforded by these methods is the same in the uni-
form and nonuniform hypergraph settings, the intuition behind these measures differs slightly.
For ZEC in the uniform setting, the centrality of a node is proportional to the sum of products
of the centralities of all nodes in edges that contain it. In the nonuniform setting, however, the
importance of a node derives from multiplying the centralities of other nodes within all pos-
sible blowups of the containing hyperedges. Despite this apparent “unevenness” in how node
importance is computed in the product, considering all possible blowups ensures there is no

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 495

artificial bias to any node within the hyperedge. HEC proceeds similarly, except the polyno-
mials on both sides of the equation have the same degree for every term—a desirable property
whenever dimensionality preservation is important, such as in physics-based applications.

The Perron—Frobenius theory guarantees the existence of the Z- and H-eigenvectors for
the nonuniform hypergraph adjacency tensor A as follows: recall, from [45], that an order k, n-
dimensional tensor X is irreducible if the associated directed graph (V, E) with V' ={1,...,n}
and

E={(i,7): there exists I ={ig,...,in} with j €I and X, ;, #0},

is strongly connected. Via the symmetry of \A, it easily follows that its associated digraph is
precisely the hypergraph’s clique expansion, in which every directed edge (i, j) is reciprocated
by an edge (j,7). Consequently, defining a connected hypergraph as one whose clique expansion
is connected, the Perron—Frobenius theorem for nonnegative tensors [45, Theorem 3.11, p. 50]
is applicable to connected, nonuniform hypergraphs as follows.

Theorem 4.2 (Perron—Frobenius theorem for the hypergraph adjacency tensor [45]). If H is
a connected, rank r hypergraph with adjacency tensor A, then there exist
o Z-cigenpair A > 0,x >0 satisfying Ax"~! = \x, and
o H-eigenpair X > 0,x > 0 satisfying Ax"~' = XxI"=U where X is the largest H-
eigenvalue of A and x is unique up to scaling.

Observe here that uniqueness up to scaling is only guaranteed for H-eigenpairs, the theory
of which is generally stronger than that for the Z-counterparts. Having established the nec-
essary theory, we now provide implementation details. ZEC is computed using a dynamical
system approach proposed by Benson and Gleich in [9]. Specifically, we have

[AX"x = Ax «—= Ax"! =x,

which is the same as requiring that the system

dx r—2
= A (A7) —x
BG: Z-eigenvector centrality NQZ: H-eigenvector centrality
Data: n-vertex, rank r hypergraph H, tolerance ~Data: n-vertex, rank r hypergraph H, tolerance
T, step size h T))
. . Result: H-eigenvector centrality, x
Result: Z-eigenvector centrality, x y=1.1
y=75-1 z = TTSV1(H,y)
repeat repeat
Y = TTSV2(H,y) (] (4]
d = dominant eigenvector of Y x =zl /’ zlr=t ‘1
x=y+h-(d-y) z = TTSV1(H,x)
g=xXQy Amin = min (z @ x7~11)
y=x . Amax = Max (z @x[r_l])
until =EECEEE <7 until (Amax — Amin)/Amin < T;
return x return x

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

496 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

DAWN, r = 3 DAWN, 1= oy = 22

1.00 ==
% B 095+ %,
W g ,, d
e Ly) id
0.95 - e P e YA

. ‘\;.,,5'\.7.4 0.90 5

o

©

o
1

0.85 4

0.85 4 0.80 4

0.754

—— CEC-HEC —— CEC-HEC

Kendall's g rank corr. coeff.
Kendall's g rank corr. coeff.

o o o
S ~ ©
=] a S
1 1 1

s CEC-ZEC 0.70 7 s CEC-ZEC
= = ZEC-CEC — — ZEC-CEC
---- ZEC-HEC 0.65 o ---- ZEC-HEC
+ HEC-CEC «+++ HEC-CEC
0.65 = = =+ HEC-ZEC 060 **' HEC-ZEC
T T L | T L T T T L | T L | T
10! 102 103 10! 102 103
Number of top-ranked elements Number of top-ranked elements

cooking, r =3 cooking, = rmax = 65

0.8

0.6 =

o
o
1

0.4~

0.2~

3
034 m= CEC-ZEC

Kendall's tg rank corr. coeff.
Kendall's tg rank corr. coeff.

Ja . = CEC-ZEC

] = = ZEC-CEC 0.0\ % == ZEC-CEC

W] -~ ZEC-HEC o i ---- ZEC-HEC

024 \u:l +«++ HEC-CEC 5 + HEC-CEC
v = =+ HEC-ZEC -0.2 = =1 HEC-ZEC
0.1+ T T T — T] — T T T

10! 10? 10! 102 103
Number of top-ranked elements Number of top-ranked elements

Figure 5. Kendall T rank correlation coefficient of ZEC, HEC, and CEC for the top k nodes.

have a steady state solution, where A maps a matrix to its dominant eigenvector. Conse-
quently, any forward integration scheme can be applied together with an eigenvector solver
to get a tensor eigenvector through a nonlinear matrix eigenvector problem. BG presents a
concrete instantiation of the Benson—Gleich approach, which utilizes TTSV2 as a subroutine.
For HEC, we use a power-iteration like method along the lines of Ng, Qi, and Zhou [40],
presented in NQZ, which relies on the calculation of TTSV1 as a subroutine.

Applying these algorithms to DAWN and cooking, we now address three questions: (1) do
our nonuniform hypergraph centrality measures provide different centrality scores in practice
from existing methods?, (2) how do these rankings change as we vary the maximum hyperedge
size r?, and (3) can these measures detect higher-order structure in hypergraphs that is inex-
pressible in graphs and therefore undetectable by clique expansion and associated approaches?
Section SM3 of the supplementary material presents additional case-study for cooking and
DAWN.

4.2.1. Tensor centralities provide complementary information. We compare ZEC and
HEC scores against each other, and against clique expansion centrality (CEC): the dominant
eigenvector of the weighted clique expansion adjacency matrix [8]. We compare the ordinal
rankings induced by ZEC, HEC, and CEC by computing Kendall’s 75 rank correlation coeffi-
cient among the top k ranked vertices. Figure 5 presents the results for DAWN and cooking for

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 497

DAWN, ZEC persistence DAWN, HEC persistence DAWN, CEC persistence
11100100000000000000 10000000000000000000] #new[10000000000000000000

#*
=]
[}

3
>
o
=
CLVWONOOU D WNHKHES

[]
(1}
[]
[]
o0
[] []
7 9 11 13 1517 19 21 3 5 7 911131517 19 21 7 9 11 13 1517 19 21
r r r

[]
Lee 00

node rank in CEC
CWVWoO~NOUDA WNKH

“w000000

node rank in ZEC
node rank in HEC

SCOVBNOU A WN R
“wo000000

[]
v

i
=
-

cooking, ZEC persistence cooking, HEC persistence cooking, CEC persistence
3188007001000000000000000000000000 8621101012010000211121212112101241 8611101010000100000000000000000000

L]
L L] L] [] L[]
o 00 o0 o 000 L[]
0000 o o o0 o 00 o0
(] L] 00 000 00 00 0 0 O
00 © © O 000 00 000000 O OO
00 © 0 0 0 00 0 0 000 O L]
L J o000 o © 0000000000
000 O 0000 & O 00 000000
0000 00 0000 O 000000000000
23 28 33 3 8 13 18 23 28 3 8 13 18 23 28 33

r r

#
>
o
CWVWONOOUAWNERS

Miiiiiil
131X

<)

#*
>
@

CLVWONOUNAWNRS
#*
>
o

o0
CLENOUBWNKRS

node rank in ZEC

*38s3s
node rank in HEC
node rank in CEC
e e 0

._.
e
—
=

W :i
$tfssstl

w
=
©

-
“18

°

Figure 6. Node rank persistence of the top 10 nodes under ZEC, HEC, and CEC for DAWN and cooking.
Purple indicates a rank change from r — 1, and yellow indicates no change.

both the full, unfiltered data (r = 22 and 65, respectively), as well as for the » = 3 filtering.
We observe that CEC rankings are relatively uncorrelated with those of HEC and ZEC, and
that no pair of measures exhibits a consistent level of correlation among the top k ranked
vertices. When compared against each other, ZEC and HEC are either weakly correlated or
uncorrelated, suggesting they provide different information in practice. Lastly, the differences
between r =3 and the unfiltered data suggest these correlations are sensitive to filtering.

4.2.2. Persistence in tensor centrality. Next, we study the persistence of rankings in-
duced by ZEC, HEC, and CEC. In particular, we perform an LEQ filtering sweep for r ranging
from 2 to the maximum hyperedge size, and record whether the rank of each of the top 10
nodes changes as we increase r. Figure 6 presents the results for DAWN and cooking, where
purple indicates rank change from r — 1, yellow indicates no change, and the top row lists the
number of new nodes in the top 10. For DAWN, CEC and HEC rankings quickly stabilize, show-
ing no changes after r =5 and 4, respectively. In contrast, ZEC rankings stabilize more slowly
at r = 14. For all three centrality measures, however, stabilization occurs before the maximum
hyperedge size at r = 22, echoing the claim in [8] that higher-order information is sometimes
well captured by hyperedges that are “medium” to “small” relative to the largest hyperedge.
Consequently, for larger data (such as mathoverflow) where the maximum hyperedge size is
prohibitively large for our algorithms, analyses may still be satisfactorily performed on a fil-
tering to smaller hyperedges. This is, of course, dataset and question-dependent, as evidenced
by the persistence results for cooking: here, HEC rankings continue to show instability across
larger r, whereas ZEC and CEC rankings both stabilize around r = 18. This highlights how
these tensor centralities can differ from matrix analogues as well as from each other.

4.2.3. Tensor centrality distinguishes Gram mates. Having shown that the tensor-based
ZEC and HEC provide different information than the matrix-based CEC, we now investigate
whether ZEC and HEC capture higher-order structure that is inexpressible by the hypergraph’s

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

498 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

62 (7] 63 €y
o/ 6 EVQ@wy -
ej

P

())/ () N ©

Y) [O i

(a) Hypergraph S (b) Hypergraph R

(c) Weighted clique expansion of S and R (d) Weighted line graph of S and R

Figure 7. Two nonisomorphic hypergraphs with identical weighted clique expansions and identical line graphs.

clique expansion graph. To address this more nuanced question, we analyze highly structured
families of hypergraphs called Gram mates [30, 31]. Gram mates are pairs of hypergraphs
having incidence matrices S and R satisfying

SST = RRT,
STS =RTR.

Interpreted combinatorially, SS7 = RRT means the codegree of any pair of vertices in
S is the same as that in R, thereby yielding identical weighted clique expansions. Similarly,
STS = RT R guarantees each pair of hyperedges has the same intersection cardinality in one
hypergraph as in the other, meaning their weighted line graphs are identical. Figure 7 presents
a small example derived from [30, 39] of nonisomorphic Gram mate hypergraphs alongside
their weighted clique expansion and line graphs. We emphasize that many existing hypergraph
measures and matrices cannot distinguish between these two hypergraphs. For example:
e The singular values of the incidence matrices S and R.
e Bolla [13] and Rodriguez’s [46] hypergraph Laplacian, Cardoso’s signless Laplacian
[15], the hypergraph adjacency matrix [14, 37], and s-line graphs [2].
e Gibson’s dynamical system for categorical data and hypergraph clustering [23].
e The hypergraph core/periphery, structural equivalence, and centrality methods de-
rived from the “dual-projection” approach advocated for in [22].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 499

e Bipartite projection based analyses, such as bipartite modularity [5].
In contrast to the above, ZEC and HEC do distinguish between the two hypergraphs in
Figure 7. In particular, letting xg and xp denote the centrality vectors for either ZEC or
HEC applied to hypergraphs S and R, we have that

xs(u) =xp(u) for u=C, D,
x5(u) >xp(u) for u=E, F,
xg(u) < xp(u) for u= A, B.

4.3. Clustering. Our TTSV algorithms also enable computation of hypergraph tensor
embeddings, which may then serve as features for many clustering algorithms, such as k-means.
Following this approach, we aim to embed the hypergraph adjacency tensor A in R™*9, where
q is the target embedding dimension, so that each node is represented by a ¢-dimensional

vector. We perform the embedding by finding a symmetric CP-decomposition [26, 32] of \A,
meaning we seek an n x ¢ matrix E and a vector A € R? such that the tensor norm given by

q
(4.1) FOLE) = A— X|| with X =) " \E"

j=1
is minimized, where E = [E1Ey---E,| and E?T is the r-way tensor outer product of E; with
itself. To optimize (4.1), we employ a standard first-order optimization scheme and utilize the
closed-form expressions [32] for the gradients

8 q
an =2 |AE} - Y A(E;,Ep)7 |
J k=1
of 1 e 1
op = 20 AET = (B By E |
J k=1
where (E;, Ey) = E?Ek, AEL =570 300 Aiy i [=y By, is the TTSV operation

which results in a scalar. Note that the T'TSV value is obtained from the TTSV1 vec-
tor simply by taking an inner product with E;. In the first order scheme, computing f and
its derivatives explicitly requires O(gn") time, but we use TTSV1-GEN, together with the
gradient computation approach outlined in [48], to cut this time down to O(TTSV1 + ng?),
where O(TTSV1) is the worst-case runtime of TTSV1-GEN. After obtaining this CP decom-
position for A, the resulting embedding £ € R™*Y may be used as features for a standard
k-means clustering algorithm [24] or more generally within any metric-space clustering frame-
work. Instead of clustering A directly, we cluster the corresponding normalized Laplacian
tensor £ from [6], given by

ey ()" [e i pre e € Be),
Lp.p, =41 iftpr=pa=---=pp,
0 otherwise.

It is worth noting that £ does not equally weight all blowups of an edge, and so TTSV1-GEN
cannot be directly applied. However, if d is the vector of all degrees, we have that £x" =
Ix" — A(d"71 ©x)" and, more generally, Lx"F = Zx"~1 — (dI=/1)®F o A=/ o x)"F,
where © is the appropriate elementwise (Hadamard) tensor product.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

500 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

(a) t-SNE of embedding for the normalized Laplacian (b) t-SNE of embedding for the normalized Laplacian
of the clique expansion (left) vs. normalized Laplacian of the clique expansion (left) vs. normalized Laplacian
tensor of the hypergraph (right) of cooking tensor of the hypergraph (right) for DAWN

Figure 8. Comparison of matriz [55] to tensor embedding of cooking (left) and DAWN (right).

We now apply the aforementioned clustering approach to cooking and DAWN. To better
reveal clusters, we filter out high-degree nodes that appear in more than 20% of the hyperedges.
We color nodes based on hyperedge type metadata, assigning each node to the majority color of
hyperedge it appears in. To better reveal node colors and speed up the computations, we also
filter out hyperedges above size r =8. Figures 8a and 8b present t-SNE [50] plots visualizing
embeddings of these datasets. For each dataset, the left visualization presents the matrix-
based embedding using the normalized Laplacian [19] of the hypergraph’s clique expansion
graph,” while the right shows the normalized Laplacian tensor embedding of the hypergraph.
For both datasets we observe starkly different geometry between the t-SNE representations of
the matrix and tensor embeddings, providing qualitative evidence that these two approaches
are capturing different features of the hypergraph cluster in practice.’

5. Conclusion and future work. We developed a suite of algorithms for performing fun-
damental tensor operations on the nonuniform hypergraph adjacency tensor. Improving upon
approaches that are intractable in time and space complexity, we developed efficient, implicit
methods tailored to exploit the nuanced symmetry of the adjacency tensor. We then demon-
strated how these algorithms give rise to fundamental tensor-based hypergraph analyses, such
as centrality and clustering, which hold promise in capturing hypergraph-native structure
over existing matrix-based approaches. Our exploration here is not comprehensive, and many
avenues remain for future work. First, we note that the hypergraph adjacency tensor we
utilized is defined for simple, unweighted, nonuniform hypergraphs. Real data may pres-
ent multiple hyperedges, weights, vertex multiplicities within a hyperedge, or directionality.
Extending our methods to accommodate such cases in a principled manner would be ad-
vantageous. Second, our application of TTSV algorithms to perform hypergraph analyses is
cursory and leaves a number of exciting possibilities to future work: how might one develop
multilinear tensor PageRank for nonuniform hypergraphs, or use our algorithms in supervised
and semisupervised machine learning problems, such as node classification and link predic-

5We also used this embedding to initialize the iterative scheme to obtain the tensor embedding.

5No effort was made to tune the performance of either clustering algorithm or evaluate which clustering is
“better.” Indeed, understanding which hypergraph structural features are highlighted by the CP decomposition
of L is a compelling open question for future work. In particular, the effectiveness of spectral clustering is
explainable in part by the tight connection between Laplacian spectra and the combinatorial properties of
the graph captured by the Cheeger inequality. The authors are unaware of any similar known results for the
nonuniform adjacency tensor (Laplacian or otherwise) associated with a hypergraph.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 501

tion? Furthermore, it seems plausible that our generating function approach to exploiting
symmetry in the hypergraph adjacency tensor could be extended to other tensor operations:
for instance, the Tucker decomposition involves repeatedly performing a tensor times same
matrix operation [21, 28]. Lastly, despite the current approach being tailored to hypergraphs,
we believe that generating-function-based tensor algorithms similar to the ones we presented
may have utility in general symmetric tensor problems beyond the context of hypergraphs.

Acknowledgments. We thank Tammy Kolda, Jiajia Li, and Shruti Shivakumar for help-
ful discussions on tensor decompositions, and Yosuke Mizutani for his assistance in drawing
the hypergraphs visualized in Figure 7. We would also like to thank the anonymous referee
who pointed out the alternative derivation of the generating function expression for TTSVK
based on the relationship VFXb" = L,k)!X bk,

T

REFERENCES

[1] S. AGARWAL, K. BRANSON, AND S. BELONGIE, Higher order learning with graphs, in Proceedings of the
23rd International Conference on Machine Learning, 2006, pp. 17-24.

[2] S. G. Aksoy, C. JosLyN, C. O. MARRERO, B. PRAGGASTIS, AND E. PURVINE, Hypernetwork science
via high-order hypergraph walks, EPJ Data Sci., 9 (2020), 16.

[3] I. AMBURG, N. VELDT, AND A. BENSON, Clustering in graphs and hypergraphs with categorical edge
labels, in Proceedings of the Web Conference 2020, 2020, pp. 706-717.

[4] A. ANTELMI, G. CORDASCO, B. KAMINSKI, P. PRALAT, V. SCARANO, C. SPAGNUOLO, AND P. SZUFEL,
Simplehypergraphs.jl—novel software framework for modelling and analysis of hypergraphs, in Algo-
rithms and Models for the Web Graph: 16th International Workshop, WAW 2019, Brisbane, QLD,
Australia, 2019, Proceedings 16, Springer, 2019, pp. 115-129.

[5] R. ARTHUR, Modularity and projection of bipartite networks, Phys. A, 549 (2020), 124341.

[6] A. BANERJEE, A. CHAR, AND B. MONDAL, Spectra of general hypergraphs, Linear Algebra Appl., 518
(2017), pp. 14-30, https://doi.org/10.1016/j.1aa.2016.12.022.

[7] A. BENSON AND J. KLEINBERG, Link prediction in networks with core-fringe data, in WWW’19, The
World Wide Web Conference, ACM, 2019, pp. 94-104.

[8] A. R. BENSON, Three hypergraph eigenvector centralities, STAM J. Math. Data Sci., 1 (2019), pp. 293-312,
https://doi.org/10.1137/18M1203031.

[9] A. R. BEnsoN AND D. F. GLEICH, Computing tensor Z-eigenvectors with dynamical systems, STAM J.
Matrix Anal. Appl., 40 (2019), pp. 1311-1324, https://doi.org/10.1137/18M1229584.

[10] A. R. BENsoN, D. F. GLEICH, AND J. LESKOVEC, Tensor spectral clustering for partitioning higher-

order network structures, in Proceedings of the 2015 STAM International Conference on Data Mining,
SIAM, 2015, pp. 118-126, https://doi.org/10.1137/1.9781611974010.14.
[11] A. R. BENsoN, D. F. GLEICH, AND L.-H. LM, The spacey random walk: A stochastic process for higher-
order data, SIAM Rev., 59 (2017), pp. 321-345, https://doi.org/10.1137/16M1074023.
[12] C. BERGE, Hypergraphs: Combinatorics of Finite Sets, North-Holland Math. Library 45, Elsevier, 1984.
[13] M. BOLLA, Spectra, Euclidean representations and clusterings of hypergraphs, Discrete Math., 117 (1993),
pp. 19-39.
[14] K. CARDOSO, R. DEL-VECCHIO, L. PORTUGAL, AND V. TREVISAN, Adjacency energy of hypergraphs,
Linear Algebra Appl., 648 (2022), pp. 181-204.
[15] K. CARDOSO AND V. TREVISAN, The signless Laplacian matriz of hypergraphs, Spec. Matrices, 10 (2022),
pp. 327-342.
. CARLETTI, F. BATTISTON, G. CENCETTI, AND D. FANELLI, Random walks on hypergraphs, Phys.
Rev. E, 101 (2020), 022308.
[17] U. CHITRA AND B. RAPHAEL, Random walks on hypergraphs with edge-dependent vertex weights, in
International Conference on Machine Learning, PMLR, 2019, pp. 1172-1181.
[18] P. S. CHODROW, N. VELDT, AND A. R. BENSON, Generative hypergraph clustering: From blockmodels
to modularity, Sci. Adv., 7 (2021), eabh1303, https://doi.org/10.1126/sciadv.abh1303.

)

[16]

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1016/j.laa.2016.12.022
https://doi.org/10.1137/18M1203031
https://doi.org/10.1137/18M1229584
https://doi.org/10.1137/1.9781611974010.14
https://doi.org/10.1137/16M1074023
https://doi.org/10.1126/sciadv.abh1303

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

502

SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

[19]
[20]

21]

22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]
[30]

31]
[32]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

F. R. CHUNG, Spectral Graph Theory, CBMS Regional Conf. Ser. in Math. 92, AMS, 1997.

J. W. CooLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex Fourier series,
Math. Comp., 19 (1965), pp. 297-301.

L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, On the best rank-1 and rank-(R1,Ra,...,RN)
approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324-1342,
https://doi.org/10.1137/S0895479898346995.

M. G. EVERETT AND S. P. BORGATTI, The dual-projection approach for two-mode networks, Soc. Netw.,
35 (2013), pp. 204-210.

D. GiBsoN, J. KLEINBERG, AND P. RAGHAVAN, Clustering categorical data: An approach based on dy-
namical systems, VLDB J., 8 (2000), pp. 222-236.

J. A. HARTIGAN AND M. A. WoNG, Algorithm AS 136: A k-means clustering algorithm, J. R. Stat. Soc.
Ser. C Appl. Statist., 28 (1979), pp. 100-108.

K. Havasui, S. G. Aksoy, C. H. PArk, AND H. PARK, Hypergraph random walks, Laplacians, and
clustering, in Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, 2020, pp. 495-504.

F. L. HitcHCOCK, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6
(1927), pp. 164-189.

L. IsmaiL, Convolution on top of the IBM cell BE processor, in PDPTA, 2009, pp. 507-611.

R. JIN, Scalable symmetric Tucker tensor decomposition, in Fourteenth International Conference on Sam-
pling Theory and Applications, 2023, https://openreview.net/forum?id=17iCMIE0V9.

Z. T. Kg, F. SHi, AND D. X1a, Community Detection for Hypergraph Networks via Regularized Tensor
Power Iteration, https://arxiv.org/abs/1909.06503v2, 2020.

S. KiMm AND S. KIRKLAND, Gram mates, sign changes in singular values, and isomorphism, Linear Algebra
Appl., 644 (2022), pp. 108-148.

S. KIRKLAND, Two-mode networks exhibiting data loss, J. Complex Netw., 6 (2018), pp. 297-316.

T. G. KoLDA, Numerical optimization for symmetric tensor decomposition, Math. Program., 151 (2015),
pp- 225-248.

T. G. KoLpa AND B. W. BADER, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455-500, https://doi.org/10.1137/07070111X.

T. G. KoLbAa AND J. R. MAYO, Shifted power method for computing tensor eigenpairs, STAM J. Matrix
Anal. Appl., 32 (2011), pp. 1095-1124, https://doi.org/10.1137/100801482.

N. W. LANDRY, I. AMBURG, M. SHI, AND S. G. AKSoy, Filtering higher-order datasets, J. Phys. Com-
plexity, 5 (2024), 015006.

N. W. LANDRY, M. Lucas, I. IacopriNi, G. PETRI, A. SCHWARZE, A. PATANIA, AND L. TORRES, XGI:
A Python package for higher-order interaction networks, J. Open Source Softw., 8 (2023), 5162.
W.-C. W. L1 AND P. SOLE, Spectra of reqular graphs and hypergraphs and orthogonal polynomials, Eu-

ropean J. Combin., 17 (1996), pp. 461-477.

Q. F. Lotito, M. ConTtisciani, C. DE Bacco, L. DI GAETANO, L. GALLO, A. MONTRESOR, F.
MuscioTTo, N. RUGGERI, AND F. BATTISTON, Hypergraphz: A library for higher-order network
analysis, J. Complex Netw., 11 (2023), cnad019.

Y. MizuTANI, S. AKsoy, E. ALHAJJAR, J. AsLaM, B. S. CHRISMAN, S. DAYS-MERRILL, H. JENNE,
T. G. OELLERICH, AND E. SEMRAD, Information loss in weighted hypergraph line graphs and clique
expansions, in 2023 Joint Mathematics Meetings (JMM 2023), AMS, 2023.

M. Nga, L. Q1, AND G. ZHOU, Finding the largest eigenvalue of a nonnegative tensor, STAM J. Matrix
Anal. Appl., 31 (2009), pp. 1090-1099, https://doi.org/10.1137/09074838X.

J. N1, J. L1, AND J. MCAULEY, Justifying recommendations using distantly-labeled reviews and fine-
grained aspects, in Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 188-197.

X. OUVRARD, J.-M. L. GOFF, AND S. MARCHAND-MAILLET, Adjacency and Tensor Representation in
General Hypergraphs Part 1: e-Adjacency Tensor Uniformisation Using Homogeneous Polynomials,
https://arxiv.org/abs/1712.08189v5, 2018.

J. M. PEREIRA, J. KILEEL, AND T. G. KOLDA, Tensor Moments of Gaussian Mixture Models: Theory
and Applications, https://arxiv.org/abs/2202.06930, 2022.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0895479898346995
https://openreview.net/forum?id=17iCMIE0V9
https://arxiv.org/abs/1909.06503v2
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/100801482
https://doi.org/10.1137/09074838X
https://arxiv.org/abs/1712.08189v5
https://arxiv.org/abs/2202.06930

Downloaded 10/04/24 to 130.20.126.193 by Ilya Amburg (ilya.amburg@pnnl.gov). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 503

[44] B. PRAGGASTIS, S. Aksoy, D. ARENDT, M. BoniciLLo, C. JosLyN, E. PURVINE, M. SHAPIRO, AND J.

[45]
[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

L.

J.

A.
S.

A.

N.

Y. YUN, HyperNetX: A Python package for modeling complex network data as hypergraphs, J. Open
Source Softw., 9 (2024), 6016, https://doi.org/10.21105/joss.06016.

QI AND Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017, https://doi.org/
10.1137/1.9781611974751.

A. RODRIGUEZ, On the Laplacian eigenvalues and metric parameters of hypergraphs, Linear Multilinear
Algebra, 50 (2002), pp. 1-14.

SHARMA AND J. SRIVASTAVA, Joint Symmetric Tensor Decomposition for Hypergraph Embeddings.

SHERMAN AND T. G. KOLDA, Estimating higher-order moments using symmetric tensor decomposition,
STAM J. Matrix Anal. Appl., 41 (2020), pp. 1369-1387, https://doi.org/10.1137/19M1299633.
SINHA, Z. SHEN, Y. SONG, H. MA, D. EipE, B.-J. P. Hsu, AND K. WANG, An overview of Microsoft
Academic Service (MAS) and applications, in Proceedings of the 24th International Conference on
World Wide Web, ACM Press, 2015, pp. 243-246, https://doi.org/10.1145/2740908.2742839.

. VAN DER MAATEN AND G. HINTON, Visualizing data using t-SNE, J. Mach. Learn. Res., 9 (2008),

pp. 2579-2605.

VELDT, A. R. BENSON, AND J. KLEINBERG, Minimizing localized ratio cut objectives in hypergraphs,
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM Press, 2020, pp. 1708-1718.

. VIRTANEN, ET AL., SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Meth-

ods, 17 (2020), pp. 261-272, https://doi.org/10.1038 /s41592-019-0686-2.

. S. WILF, Generatingfunctionology, CRC Press, 2005.
. ZHEN AND J. WANG, Community detection in general hypergraph via graph embedding, J. Amer.

Statist. Assoc., 118 (2023), pp. 1620-1629.

. ZHou, J. HUANG, AND B. SCHOLKOPF, Learning with hypergraphs: Clustering, classification, and

embedding, in Advances in Neural Information Processing Systems 19, NIPS 2006, MIT Press, 2007,
pp. 1601-1608.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.21105/joss.06016
https://doi.org/10.1137/1.9781611974751
https://doi.org/10.1137/1.9781611974751
https://doi.org/10.1137/19M1299633
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Preliminaries
	Tensor times same vector for hypergraphs
	Unordered blowup approach
	Generating function approach

	The hypergraph adjacency tensor in practice
	Timing experiments
	Centrality
	Tensor centralities provide complementary information
	Persistence in tensor centrality
	Tensor centrality distinguishes Gram mates

	Clustering

	Conclusion and future work
	Acknowledgments
	References

