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Scalable Tensor Methods for Nonuniform Hypergraphs\ast 

Sinan G. Aksoy\dagger , Ilya Amburg\ddagger , and Stephen J. Young\dagger 

Abstract. While multilinear algebra appears natural for studying the multiway interactions modeled by hy-
pergraphs, tensor methods for general hypergraphs have been stymied by theoretical and practical
barriers. A recently proposed adjacency tensor is applicable to nonuniform hypergraphs but is pro-
hibitively costly to form and analyze in practice. We develop tensor times same vector (TTSV)
algorithms for this tensor, which improve complexity from O(nr) to a low-degree polynomial in
r, where n is the number of vertices and r is the maximum hyperedge size. Our algorithms are
implicit, avoiding formation of the order r adjacency tensor. We demonstrate the flexibility and
utility of our approach in practice by developing tensor-based hypergraph centrality and clustering
algorithms. We also show that these tensor measures offer complementary information to analogous
graph-reduction approaches on data and are also able to detect higher-order structure that many
existing matrix-based approaches provably cannot.
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1. Introduction. The study of hypergraphs is fraught with choices of representation.
From Laplacians [13, 15, 46, 55], to probability transition matrices [16, 17, 25], to variants of
incidence and adjacency matrices [2, 14, 37], there is no shortage of proposed hypergraph data
structures. Despite these options, selecting among them can be challenging, as each comes
with significant and sometimes nuanced limitations. For example, adjacency, random walk,
and Laplacian matrices are typically lossy in that they only contain information about the
hypergraph's clique expansion graph, thereby losing the information encoded in higher-order
interactions [1, 25]. In contrast, rectangular incidence matrices faithfully model hypergraphs
but have analytical limitations: for instance, their singular values reflect information about
the weighted line graph and clique expansion reductions, which do not uniquely identify the
hypergraph [30]. Arguably, these challenges stem from mismatching hypergraphs, models of
higher-dimensional relationships, with two-dimensional arrays.
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Tensor arrays, therefore, appear a natural choice for hypergraph-native analyses. However,
their application in the hypergraph setting poses immediate conceptual and computational
challenges. A primary theoretical barrier is that nonuniform hypergraphs do not afford an
obvious tensor representation. For this reason, despite real hypergraph-structured data nearly
always exhibiting hyperedges of varying sizes, much of the existing tensor literature on hy-
pergraphs is limited to the uniform case [10, 11, 47], relies on augmenting the hypergraph
with auxiliary nodes [42, 54], or synthesizes a collection of differently sized tensors for each
hyperedge size [29]. One notable exception of using tensors to directly study nonuniform hy-
pergraphs, however, is the adjacency tensor recently proposed by Banerjee, Char, and Mondal
[6]. Loosely speaking, this tensor encodes nonuniform hyperedges by ``inflating"" each to the
maximum hyperedge size r. This yields an order r, n-dimensional tensor, where n is the num-
ber of vertices. Consequently, the nonuniform adjacency tensor solves a conceptual challenge
but poses a computational one: its explicit formation and analysis are intractable for nearly
any hypergraph data with nontrivially sized hyperedges, since fundamental tensor operations
like tensor times same vector (TTSV) have cost O(nr).

In this work, we focus on ameliorating these computational challenges to enable use of
the hypergraph adjacency tensor in practice. Our main focus is creating efficient algorithms
for TTSV. In particular, we drastically speed up the tensor times same vector in all modes
but one (TTSV1) operation from O(nr) to a low-degree polynomial in r. We perform an
analogous speedup for tensor times same vector in all modes but two (TTSV2) using an
approach that easily generalizes to tensor times same vector in all modes but k (TTSVk).
Moreover, our methods are implicit and tensor-free, avoiding formation of the costly order-r
tensor. We achieve these improvements using combinatorial methods that exploit the nuanced
symmetry of the hypergraph adjacency tensor. We derive best- and worst-case complexity
bounds of our algorithms and supplement these analytical results with timing experiments on
real data.

Since TTSV is a workhorse in many tensor algorithms such as canonical polyadic (CP)
decomposition and tensor eigenvector computation [8, 9, 10, 11, 32, 33, 48], our algorithms
enable a host of tensor-based hypergraph analytics. We illustrate this by proposing simple
tensor-based centrality and clustering algorithms where TTSV is the primary subroutine. For
centrality, we apply recent nonlinear Z- and H-eigenvector formulations [8] to nonuniform
hypergraphs, whose existence is guaranteed by the Perron--Frobenius theorem for tensors [45].
For clustering, we outline an approach that uses fast CP decomposition to obtain an embedding
for the hypergraph, which is then fed into k-means [24], or any metric space approach, for
clustering. We then study these measures experimentally, showing each offers complementary
node importance information on data. Moreover, we show that these tensor measures detect
differences in structured hypergraphs with identical underlying graph information, as given
by their weighted clique and line graphs. In contrast to many existing hypergraph methods,
this means tensor approaches enabled by our algorithms analyze multiway interactions in
hypergraph data directly---without reducing them to groups of pairwise interactions modeled
by graphs.

The paper is structured as follows: Section 2 reviews the necessary preliminaries. Sec-
tion 3 presents our algorithms for TTSV1. As the details of the algorithms and analysis for
TTSV2 are similar to that of TTSV1, we defer their discussion to section SM1 of the supple-
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 483

mentary material. Section 4 applies these algorithms to develop a tensor-based approach for
nonuniform hypergraph centrality and clustering. Section 5 concludes and highlights avenues
for future work.

2. Preliminaries. A hypergraph H = (V,E) is a set V of n vertices and a set E of m
hyperedges, each of which is a subset of V . The degree of a vertex v and hyperedge e is
d(v) = | \{ e \in E : v \in e\} | and d(e) = | e| , respectively. The rank of a hypergraph is maxe d(e),
and if d(e) = k for all e \in E, we call the hypergraph k-uniform. The volume of a hypergraph
is Vol(H) =

\sum 
v\in V d(v) =

\sum 
e\in E d(e). The set of hyperedges to which v belongs is denoted by

E(v), while E(u, v) denotes those to which both u and v jointly belong. The clique expansion of
a hypergraph (V,E) is the graph on V with edge set \{ \{ u, v\} \in V \times V : u, v \in e for some e\in E\} .
For more basic hypergraph terminology, we refer the reader to [2, 12].

A tensor of order r is an r-dimensional array. Lowercase bold letters denote vectors, e.g.,
\bfa , while uppercase bold letters in regular and Euler script denote matrices and tensors, e.g.,
\bfX and \bfscrX , respectively. For a tensor \bfscrX , the value at index i1, . . . , ir is given by \bfscrX i1,...,ir . In
general, we assume the vertices of a hypergraph are indexed by [n] = \{ 1, . . . , n\} and that each
index in a tensor \bfscrX has n components, i1, . . . , ir \in [n]r. The notation \bfa [k], \bfa \odot \bfb , and \bfa \oslash \bfb 
denote the elementwise power, product, and division operations, respectively. Following stan-
dard notation from generating functions (see, for instance, [53]), we will denote the coefficient
of tr in the generating function f(t) by f [tr]. Lastly, we use Bachmann--Landau asymptotic
notation. Our algorithm complexities are multivariate and depend on the rank r, number of
hyperedges m, and volume Vol(H) of the hypergraph H.

Tensors have long been used to encode adjacency in uniform hypergraphs. In particular,
a rank r uniform hypergraph's adjacency tensor is order r with

\bfscrA v1,...,vr
=

\Biggl\{ 
w if \{ v1, . . . , vr\} \in E,

0 otherwise,

where w refers to a chosen weight, such as w= 1 or 1/(r - 1)!. Recently, [6] generalized this to
nonuniform hypergraphs. Underlying this definition is a concept we call hyperedge blowups.

Definition 2.1. Given a hyperedge e of a rank r hypergraph, we call the sets

\beta (e) = \{ i1 . . . ir \in er : for each v \in e, there is j such that ij = v\} ,
\kappa (e) = \{ x : x is a size r multiset with support e\} 

the ``blowups"" and ``unordered blowups"" of hyperedge e, respectively.

For example, for e= \{ 1,3\} in a rank 3 hypergraph, we have

\beta (e) = \{ (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,1,3), (3,3,1)\} ,
\kappa (e) = \{ \{ 1,1,3\} ,\{ 1,3,3\} \} .

The nonuniform hypergraph adjacency tensor [6] places nonzeros in positions corresponding
to blowups of hyperedges, with values weighted by the size of that hyperedge's blowup set.

Definition 2.2 (nonuniform hypergraph adjacency tensor [6]). For a rank r hypergraph, its
adjacency tensor \bfscrA is order r and is defined elementwise for each hyperedge e,
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484 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

\bfscrA p1...pr
=

\Biggl\{ 
we if p1 . . . pr \in \beta (e),
0 otherwise,

where we denotes a chosen hyperedge weighting function.

We note that while [6] takes we =
| e| 

| \beta (e)| so that TTSV1 with the all-ones vector yields the
degree sequence, our algorithms will not require this choice. Furthermore, in addition to adja-
cency tensors, our methods also easily adapt to the Laplacian tensors in [6], as we illustrate in
section 4.3. Lastly, a different approach to building nonuniform hypergraph adjacency tensors
relies on inserting copies of an auxiliary ``dummy"" vertex within each hyperedge [54], rather
than using those already present in the hyperedge via blowups. While we focus on the blowup
approach, our algorithms easily adapt to this case as well. The TTSV operations we tailor for
\bfscrA form the backbone of many tensor algorithms such as tensor decomposition [32, 33, 48] and
eigenvector computation [8, 9, 10, 11] and are defined in general as follows: given an order r
tensor \bfscrX and a vector \bfb \in \BbbR n, \bfscrX \bfb r - 1 \in \BbbR n denotes the TTSV1 operation given by

\bigl[ 
\bfscrX \bfb r - 1

\bigr] 
i1
=

n\sum 
i2=1

\cdot \cdot \cdot 
n\sum 

ir=1

\bfscrX i1,...,ir

r\prod 
k=2

\bfb ik ,(2.1)

and TTSV2, denoted \bfscrX \bfb r - 2 \in \BbbR n\times n, is given by

\bigl[ 
\bfscrX \bfb r - 2

\bigr] 
i1,i2

=

n\sum 
i3=1

\cdot \cdot \cdot 
n\sum 

ir=1

\bfscrX i1,...,ir

r\prod 
k=3

\bfb ik .(2.2)

Given the TTSV2 matrix, the TTSV1 vector is easily obtained through right-multiplication by
\bfb . However, whenever the full TTSV2 is unnecessary, it suffices to compute TTSV1 directly.
Lastly, we note that computing TTSV without explicitly forming the tensor is an example of
an implicit tensor operation and has been recently studied in the context of moment tensors
of Gaussian mixture models [43, 48].

3. Tensor times same vector for hypergraphs. We now develop efficient, implicit TTSV
methods for analyzing the hypergraph adjacency tensor \bfscrA . Rather than explicitly construct-
ing, storing, or accessing elements of \bfscrA , our algorithms directly facilitate tensor operations
on the input hypergraph. We divide our work into two approaches: first, we present simple
algorithms which achieve speedup over the naive approach by leveraging several combinatorial
observations on the unordered blowups discussed in Definition 2.1. Then, we further improve
upon these algorithms by using generating function theory. Code for our TTSV algorithms is
available at https://github.com/pnnl/GENTTSV, in Python for hypergraph libraries Hyper-
NetX [44], HypergraphX [38], and XGI [36], and Julia for SimpleHypergraphs [4].

3.1. Unordered blowup approach. This approach for computing TTSV1 for \bfscrA will use
the following basic combinatorial facts.

Lemma 3.1. Let e = \{ v1, . . . , vk\} be a hyperedge of a rank r and \beta (e) and \kappa (e) as defined
in Definition 2.1. Then the following hold:
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 485

(a) | \beta (e)| = | e| ! \cdot 
\bigl\{ 

r
| e| 
\bigr\} 
, where

\bigl\{ 
r
| e| 
\bigr\} 
denotes the Stirling number of the second kind.1

(b) | \kappa (e)| =
\bigl( 
r - 1
r - | e| 

\bigr) 
.

(c) For given vertices u\in e and x\in \kappa (e), the number of blowups i1, . . . , ir \in \beta (e) that have
support equal to that of x with ij = u is given by the multinomial coefficient

\phi 1(x,u) :=

\biggl( 
r - 1

mx(v1), . . . ,mx(u) - 1, . . . ,mx(vk)

\biggr) 
,

where mx(w) denotes the multiplicity of node w in x.

TTSV1-Unord presents the algorithm for the unordered blowup approach. The main
idea is to exploit the nonzero pattern in \bfscrA . Recalling that i1 corresponds to a node index
when applying the TTSV1 vector given in (2.1) to \bfscrA , the only nonzeros that contribute
to the sum for this component correspond to blowups of all hyperedges to which node i1
belongs. This observation significantly reduces the cost of TTSV1 from the naive O(nr)
approach in the absence of the special structure induced by the hypergraph and leads to a
less naive algorithm: for every vertex, iterate through its hyperedges and update the sum over
all elements of the corresponding blowups. However, this approach still requires explicitly
enumerating blowups, which is extremely costly. Instead, TTSV1-Unord only considers
unordered blowups. By Lemma 3.1(c), there are exactly \phi 1(x, v) many blowups with v in
a fixed position that correspond to a given unordered blowup x \in \kappa (e). The correctness of
TTSV1-Unord immediately follows. We note the cost savings here occurs per hyperedge,
yielding speedups of several orders of magnitude for real datasets with larger r.

Proposition 3.2. Let H = (V,E) be a rank r hypergraph with m edges. Then TTSV1-Unord

runs in time \Theta (
\sum 

e\in E r| e| 
\bigl( 
r - 1
r - | e| 

\bigr) 
). Let \epsilon =min\{ \mathrm{V}\mathrm{o}\mathrm{l}(H)

m ,1 - \mathrm{V}\mathrm{o}\mathrm{l}(H)
m \} ; then this running time is at

least

\Omega 
\bigl( 
r2m

\bigr) 
and at most O

\Bigl( 
\epsilon mr

3/22r
\Bigr) 
.

TTSV1-Unord: TTSV1 via unordered blowups
Data: rank r hypergraph pV,E,wq, vector b
Result: Abr´1

“ s
for v P V do

c Ð 0
for e P Epvq do

for x P κpeq do

c `“ we
ϕ1px, vq

bv

ź

uPx

bu

end

end
sv Ð c

end
return s

1An explicit formula for Stirling numbers of the second kind is
\bigl\{ 
n
k

\bigr\} 
= 1

k!

\sum k
i=0( - 1)i

\bigl( 
k
i

\bigr) 
(k - i)n.
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486 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Proof. Calculate the innermost terms of the sum runs in \Theta (r); thus the runtime is\sum 
v\in V

\sum 
e\in E(v)

\sum 
x\in \kappa (e)

\Theta (r) =
\sum 
e\in E

\sum 
v\in e

\sum 
x\in \kappa (e)

\Theta (r) =
\sum 
e\in E

\Theta 

\biggl( 
r | e| 

\biggl( 
r - 1

r - | e| 

\biggr) \biggr) 
.

Thus, we have that the runtime is completely determined by the sizes of the edges of H.
Now, noting that, by algebraic manipulation, we have that r| e| 

\bigl( 
r - 1
r - | e| 

\bigr) 
= | e| 2

\bigl( 
r
| e| 
\bigr) 
, we define

f : \{ 2, . . . , r\} \rightarrow \BbbN by f(k) = k2
\bigl( 
r
k

\bigr) 
. We observe that

f(k+ 1)

f(k)
=

(k+ 1)2
\bigl( 

r
k+1

\bigr) 
k2
\bigl( 
r
k

\bigr) =
(k+ 1)2k!(r - k)!

k2(k+ 1)!(r - k - 1)!
=

k+ 1

k

r - k

k
.

Thus the maximum of f occurs at k\ast = \lfloor r2\rfloor + 1 and f is monotonically increasing below k\ast 

and monotonically decreasing above k\ast . As f(2), f(r) \in \Theta (r2), we have that the runtime of
TTSV1-Unord is bounded below by \Theta (r2m).

For the upper bound, let e1, . . . , em be a sequence of integers such that
\sum 

i ei = Vol(H)
and

\sum 
i f(ei) is maximized. By the monotonicity of f , either ei \leq k\ast for all i or ei \geq k\ast for all

i. Let C = \lfloor 2
\surd 
r\rfloor and suppose k and \ell are such that | k - k\ast | , | \ell  - k\ast | \geq C; then we have

f(k) + f(\ell )

f(k\ast )
=

k2
\bigl( 
r
k

\bigr) 
+ \ell 2

\bigl( 
r
\ell 

\bigr) 
(k\ast )2

\bigl( 
r
k\ast 

\bigr) \leq 
2r2
\bigl( 

r
k\ast  - C

\bigr) 
(k\ast )2

\bigl( 
r
k\ast 

\bigr) \leq 8
(k\ast )!(r - k\ast )!

(k\ast  - C)!(r - k\ast +C)!

= 8

C\prod 
j=1

k\ast  - C + j

r - k\ast + j

\leq 8

\biggl( 
k\ast 

r - k\ast +C

\biggr) C

= 8

\biggl( 
1 - r - 2k\ast +C

r - k\ast +C

\biggr) C

\leq 8

\biggl( 
1 - C  - 1

r
2 +C

\biggr) C

\leq 8exp

\biggl( 
 - C(2C  - 2)

r+ 2C

\biggr) 
\leq 1.

This implies, by the maximality of e1, . . . , em, that ei \in \{ 2, r\} \cup [k\ast  - C,k\ast + C] for all i.
Further, since f(k) = \Theta (f(k\ast )) = \Theta (r

3/22r) for all k\ast  - C \leq k \leq k\ast +C, this gives the desired
upper bound on the runtime of TTSV1-Unord.

3.2. Generating function approach. The runtime of TTSV1-Unord is dominated by
the innermost loop, iterating over unordered blowups \kappa (e) for all edges e. Indeed, for most
real datasets, where the size of a typical edge is much smaller than the largest edge, this is
a significant bottleneck as the size of this set scales exponentially with the size of the edge,
i.e., | \kappa (e)| =O(r| e| ). However, by taking a generating function approach the inner loop can be
considerably simplified and accelerated. To illustrate this, consider the summation over the
inner loop for the case when e= \{ u, v\} \in E(v):
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 487

\sum 
x\in \kappa (\{ u,v\} )

we
\phi 1(x, v)

\bfb v

\prod 
i\in x

\bfb i =
we

\bfb v

r - 1\sum 
ku=1

\phi 1(u
kuvr - 1 - ku , v)\bfb ku

u \bfb r - ku
v

=we

r - 1\sum 
ku=1

(r - 1)!

ku!(r - 1 - ku)!
\bfb ku
u \bfb r - 1 - ku

v

=we(r - 1)!

r - 1\sum 
ku=1

1

ku!
\bfb ku
u

1

(r - 1 - ku)!
\bfb r - 1 - ku
v .(*)

We note that the summation in (*) can be viewed as a convolution of two sequences

0,
1

1!
\bfb 1
u,

1

2!
\bfb 2
u, . . . ,

1

(r - 1)!
\bfb r - 1
u and

1

0!
\bfb 0
v,

1

1!
\bfb 1
v,

1

2!
\bfb 2
v, . . . ,

1

(r - 1)!
\bfb r - 1
v .

Alternatively, if we define ur(t) =
\sum r - 1

k=1
1
k!\bfb 

k
ut

k and vr(t) =
\sum r - 1

k=0
1
k!\bfb 

k
vt

k, the summation (*)
may be thought of as the coefficient of tr - 1 in ur(t)vr(t). Recall that the coefficient of tr in
the generating function f(t) is denoted by f [tr]. In fact, for any d\geq 0 the summation is equal
to (ur+dvr+d) [t

r - 1], and thus taking

u(t) =

\infty \sum 
k=1

1

k!
\bfb k
ut

k = exp(\bfb ut) - 1 and v(t) =

\infty \sum 
k=0

1

k!
\bfb k
vt

k = exp(\bfb vt),

we have that (uv)[tr - 1] is the value of the inner sum for an arbitrary choice of largest edge
size r. This argument may be easily extended to an arbitrary edge \{ v,u1, . . . , u\ell \} = e \in E(v)
by noting that the contribution to the inner sum by blowups of e with kv copies of v and
k1, . . . , k\ell copies of u1, . . . , u\ell is given by

we
(r - 1)!

(kv)!
\prod \ell 

j=1(kj)!
\bfb kv
v

\ell \prod 
j=1

\bfb kj
uj

=wE(r - 1)!
\bfb kv
v

(kv)!

\ell \prod 
j=1

\bfb 
kj
uj

(kj)!
.

Now by summing over valid choices of kv and k1, . . . , k\ell , we get that the total contribution of
the inner loop from the edge e is given by

we(r - 1)!

r - \ell  - 1\sum 
kv=0

\sum 
1\leq kj\leq r - \ell 
kv+

\sum 
j kj=r

\bfb kv
v

(kv)!

\ell \prod 
j=1

\bfb 
kj
uj

(kj)!
.

As above, if we introduce the variable t, this can be viewed as the coefficient of tr - 1 in a
generating function, specifically\left(  we(r - 1)!

\infty \sum 
kv=0

\infty \sum 
k1,...,k\ell =1

\bfb kv
v tkr

(kv)!

\ell \prod 
j=1

\bfb 
kj
uj t

kj

(kj)!

\right)  [tr - 1].

Thus, by interchanging the products and summations we have that the inner sum in
TTSV1-Unord is given by

we(r - 1)!

\left(  exp(\bfb vt)
\prod 

u\in e - \{ v\} 

(exp(\bfb ut) - 1)

\right)  [tr - 1].
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488 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Alternatively, the expression for the inner sum can be derived analytically from the gen-
erating function representation for TTSV. Specifically, using the same approach as above, we
have that

\bfscrX \bfb r =

\Biggl( \sum 
e\in E

wer!
\prod 
v\in e

(exp(\bfb vt) - 1)

\Biggr) 
[tr].

Since, as shown in [34, Lemmas 3.1 and 3.3] for k = 1 and 2, any symmetric tensor \bfscrX and
vector \bfb satisfy \nabla k (\bfscrX \bfb r) = r!

(r - k)!\bfscrX \bfb r - k, and we have that

\bfscrX \bfb r - k =

\Biggl( \sum 
e\in E

we(r - k)!\nabla k
\prod 
v\in e

(exp(\bfb vt) - 1)

\Biggr) 
[tr - k].

For example, the (u,u) diagonal terms of TTSV2 are given by\Biggl( \sum 
e\in E

we(r - 2)!
\partial 2

\partial \bfb 2
u

\prod 
v\in e

(exp(\bfb vt) - 1)

\Biggr) 
[tr - 2]

=

\left(  \sum 
e\in E(u)

we(r - 2)! exp(\bfb ut)
\prod 

v\in e - \{ u\} 

(exp(\bfb vt) - 1)

\right)  [tr - 2].

While this generating function simplifies the exposition of these algorithms, in practice we
require an efficient means of extracting the appropriate coefficient from the generating func-
tion. Accordingly, we present two different options for evaluating the generating function ap-
proach, a subset expansion approach, Subset-Gen, which runs in time \Theta 

\bigl( 
(| e| + log2(r)) 2

| e| \bigr) ,
and a modification of the fast Fourier transform (FFT) [20] approach to polynomial multipli-
cation, FFT-Gen, which runs in time \Theta (| e| r log2(r)). We note that the runtimes of these two
algorithms are asymptotically equivalent for edges of size log2(r) + log2 log2(r) + \Theta (1), with
Subset-Gen asymptotically faster for smaller edges and FFT-Gen asymptotically faster for
larger edges. For convenience, we assume that all edges of size at most log2(r) + log2 log2(r)
are evaluated using Subset-Gen and larger edges are evaluated via FFT-Gen. Figure 1

2 20 38 56 74 92
r

2

20

38

56

74

92

|e
|

subset expansion faster

FFT faster

Figure 1. Efficiency of FFT versus subset expansion for generating function evaluation.
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 489

plots the edge size region where subset expansion outperforms FFT (and vice-versa). It is
interesting to note that difference in runtimes between the two approaches can be understood
by which computationally efficient subroutines are being used. For instance, FFT-Gen relies
on the FFT as a computationally efficient subroutine and as a consequence must take the
time to form all the degree r polynomials associated with the edge e and operate on these
polynomials (which are larger than the original edge). In contrast to this approach, Subset-
Gen relies on the fact that arbitrary coefficients of exponential generating functions can be
efficiently evaluated. In particular, Subset-Gen relies on the fact that eat

\prod k
i=1

\bigl( 
ebit  - 1

\bigr) 
can

be expanded to

eat
\sum 
S\subseteq [k]

( - 1)| S| 
\prod 
s\in S

ebst =
\sum 
S\subseteq [k]

( - 1)k - | S| e(a+
\sum 

s\in S bs)t.

The tr coefficient of each of these summands can then be trivially evaluated. Thus, there is
an exponential dependence on the edge size and minimal dependence on the maximum edge
size r.

While not explored in this work, we note that further asymptotic speedups are possible
by hybridizing these two approaches. Specifically, by partitioning the edge e into small sets
e1, . . . , ek of size approximately log log(r), the full generating function for these can be calcu-
lated for the sets individually using a variant of the Subset-Gen approach, and then this set
of generating functions could be combined using the FFT.

Proposition 3.3. Let H = (V,E) be a rank r hypergraph with m edges, and let k\ast = log2(r)+
log2 log2(r). The asymptotic runtime of TTSV1-Gen is given by\sum 

e\in E
| e| \leq k\ast 

| e| 2| e| log2(r) +
\sum 
e\in E
| e| >k\ast 

| e| 2 r log2(r).

FFT-Gen: FFT evaluation of generating
function

multFFT: Multiplication using the FFT

\bfD \bfa \bft \bfa : polynomials f(t) and g(t)
\bfR \bfe \bfs \bfu \bfl \bft : f(t)g(t)
c(t)\leftarrow FFT - 1(FFT (g(t))\odot FFT (f(t)))
\bfr \bfe \bft \bfu \bfr \bfn c(t)

Subset-Gen: Subset enumeration evalua-
tion of generating function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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490 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

If, in addition, the average hyperedge size \delta = \mathrm{V}\mathrm{o}\mathrm{l}H
m is such that there is some constant \epsilon > 0

such that 2 + \epsilon < \delta < (1 - \epsilon )r, TTSV1-Gen runs in time at least\left\{     
\Omega 
\bigl( 
Vol(H)2\delta log2(r)

\bigr) 
, \delta < 1

2k
\ast ,

\Omega 
\bigl( 
Vol(H)2(1 - o(1))\delta log2(r)

\bigr) 
, 1

2k
\ast \leq \delta \leq k\ast ,

\Omega (Vol(H)\delta r log2(r)) , k\ast < \delta ,

and at most

O
\bigl( 
r2 log2(r)Vol(H)

\bigr) 
.

Proof. As in the proof of Proposition 3.2, the runtime depends on the hyperedge size
sequence, yielding \Theta (

\sum 
e\in E | e| h(| e| , r)), where h(k, r) is the runtime of extracting the coefficient

of tr - 1 in the generating function associated with an edge of size k. If, for every edge, we use
the faster of FFT-Gen and Subset-Gen, this gives that

h(k, r) =

\Biggl\{ 
log2(r)2

k, k\leq k\ast ,

kr log2(r), k\ast <k.

As the shape of the edge size distribution has different effects for ``small"" edges (those of
size at most k\ast ) and ``large"" edges (those with size at least k\ast ), we consider each of these
distributions separately. To that end, let mS be the number of small edges, and let mF be
the number of large edges, with \delta S and \delta F denoting the respective average edge sizes. We
note that m =mS +mF and \delta SmS + \delta FmF = Vol(H) = \delta m. We first note that by standard
results, the runtime for large edges is minimized when all edges have the same size, \delta F , and
maximized when all edges have size either k\ast or r.

We now consider the extremal runtimes for the small edges and show that local modifica-
tions of the edge sizes will lead to both extremal runtimes. In particular, let e and f be small
edges such that | e| + 1< | f | \leq k\ast ; then

| e| h(| e| , r) + | f | h(| f | , r)
log2(r)

= | e| 2| e| + | f | 2| f | 

= (| e| + 1)2| e| +1 + (| f |  - 1)2| f |  - 1  - (| e| + 2)2| e| + (| f | + 1)2| f |  - 1

\geq (| e| + 1)2| e| +1 + (| f |  - 1)2| f |  - 1

=
(| e| + 1)h(| e| + 1, r) + (| f |  - 1)h(| f |  - 1, r)

log2(r)
.

As a consequence, the runtime of the small edges is minimized when all mS of the edges have
the same size, \delta S , and it is maximized when every small edge has size either 2 of k\ast .

Thus, the maximum total runtime is at most

8 log2(r)
(r - \delta )m - (r - k\ast )mk

r - 2
+ (k\ast )2r log2(r)mk + r3 log2(r)

(\delta  - 2)m - (k\ast  - 2)mk

r - 2
,

where mk is the number of edges of size k\ast . As the coefficient on mk in this expression is
asymptotically negative, this is maximized when mk is 0, that is, when the only edge sizes are
either 2 and r, and thus the asymptotic runtime is O(r2 log2(r)Vol(H)).
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 491

To address the minimum runtime, we recall from above that the runtime is minimized
if all the small edges and all the large edge have the same size. For notational convenience,
we define VS = \delta SmS and VF = \delta FmF as the volume of edges which are processed by subset
expansion and FFT, respectively. Then, the asymptotic runtime is given by

VS2
VS
mS log2(r) +mF

\biggl( 
VF

mF

\biggr) 2

r log2(r) = VS2
\delta S log2(r) + VF \delta F r log2(r).

Now suppose that VF/VolH \in \Omega (1). Then, as \delta F \geq \delta , we see that

VF \delta F r log2(r)

Vol(H)\delta r log2(r)
\in \Omega (1) .

In particular, this implies that the only case where the runtime is o(Vol(H)\delta r log2(r)) is when
VS = (1 - o(1))Vol(H) and \delta S = (1 - o(1))\delta . As \delta S < k\ast , this implies that if \delta \geq k\ast , then the
minimal runtime is \Omega (Vol(H)\delta ).

We note that we may view VS and VK as functions of \delta S and \delta K , yielding

f(\delta S , \delta F ) =
m\delta K  - Vol(H)

\delta K  - \delta S
\delta S2

\delta s log2(r) +
Vol(H) - m\delta S

\delta F  - \delta S
\delta 2F r log2(r).

It is a straightforward, albeit tedious, exercise to show that, taken as a function of \delta F , f
is minimized when \delta F takes the value

\delta \ast F = \delta S + \delta S

\sqrt{} 
1 - 2\delta S

\delta Sr
\leq 2\delta S .

In particular, this implies that if \delta S<
1
2k

\ast (equivalently, if \delta <k\ast ), then the minimum runtime is

\Theta 
\Bigl( 
Vol(H)2\delta log2(r)

\Bigr) 
.

We note that the gap between upper and lower runtime bounds for TTSV1-Gen and
TTSV2-Gen is on the order of r/\delta and (r/\delta )

2, respectively. This is, in a sense, the best
possible gap, as it represents the ratio between the maximum and minimum second and third
moments, respectively, of edge sizes for a fixed average size. In practice, these moments govern
the runtime for these algorithms up to a multiplicative function based on the max edge size r.

4. The hypergraph adjacency tensor in practice. We explain how to use our TTSV
algorithms to perform fundamental hypergraph analyses, which we then apply to the datasets
listed and summarized in Table 1. In particular, we focus on algorithms for computing tensor
eigenvector centralities, as well as a CP-decomposition approach for performing tensor-based
hypergraph clustering. Our study here is meant to be illustrative rather than exhaustive:
TTSV algorithms find far-ranging application in tensor computation beyond these two tasks.
While our goal is not to argue that the specific centrality and clustering algorithms we propose
are the best of their type, we show they provide complementary information to graph reduction
approaches performed on the clique expansion, and provide a concrete example to illustrate
that they detect subtle, higher-order structure in hypergraphs that a wide variety of popular,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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492 SINAN G. AKSOY, ILYA AMBURG, AND STEPHEN J. YOUNG

Table 1
Summary statistics of datasets.

2 17 32 47 62 77 92
r

2

4

6

8

10

mathoverflow
MAG-10
DAWN
cooking
walmart-trips
trivago-clicks
stackoverflow
amazon-reviews
k * (r)

Figure 2. \delta versus r.

Dataset Ref. | V | | E| \delta Vol(H) r

mathoverflow [51] 73.8K 5.4K 24.2 132K 1.8K
filtered 39.8K 5.2K 11.3 58.8K 100

MAG-10 [3, 49] 80.2K 51.9K 3.5 181K 25
DAWN [3] 2.1K 87.1K 3.9 343K 22
cooking [3] 6.7K 39.8K 10.8 429K 65
walmart-trips [3] 88.9K 69.9K 6.6 461K 25
trivago-clicks [18] 173K 233K 3.1 726K 86
stackoverflow [51] 15.2M 1.1M 23.7 26.1M 61.3K

filtered 7.8M 1.0M 10.1 10M 76
amazon-reviews [41] 2.3M 4.3M 17.1 73.1M 9.4K

filtered 2.2M 3.7M 9.6 35.6M 27

existing matrix-based methods provably cannot. Taken together, this suggests that the tensor
approaches enabled by our algorithms are flexible, tractable, and worthwhile avenues for
nonuniform hypergraph data analysis. Before proceeding, we compare the empirical runtimes
of the aforementioned TTSV algorithm variants. All experiments were run on a single core
of a MacBook Pro with an M1 Max processor and 32 GB of RAM.

4.1. Timing experiments. We compare the empirical runtimes of TTSV1-Gen and
TTSV1-Unord against two baselines: explicit, in which \bfscrA is constructed explicitly and
TTSV1 is computed from definition, and ordered, which is identical to TTSV1-Unord ex-
cept that it iterates over full blowup sets \beta (e) rather than \kappa (e). To study scaling in hypergraph
rank, we increase r from 2 up to a maximum of 100 or the largest hyperedge size,2 or until
the execution timeout of one hour. This procedure corresponds to the ``less than or equal
to"" (LEQ) filtering discussed in [35]. With this scheme, we are able to process MAG-10, DAWN,
walmart-trips, cooking, and trivago-clicks in their unfiltered entirety, mathoverflow un-
til r = 100, to guard against floating-point errors, and stackoverflow and amazon-reviews

until timeout at r= 76 and r= 27, respectively.
Figure 3 presents the TTSV1 results for all datasets in Table 1. Similar results for TTSV2

are reported in Figure SM1 of the supplementary material. Missing times indicate the algo-
rithm either timed out after an hour or forced an out-of-memory error. For all datasets, the
explicit algorithm becomes intractable after r > 3. The separation between the green and blue
lines attests to the significant speedup from considering only unordered blowups. Furthermore,
TTSV1-Gen provides additional speedup many orders of magnitude over TTSV1-Unord,
even for modest values of r. For example, in mathoverflow, the speedup at r= 9 is about an
order of magnitude and increases to about three orders of magnitude by r= 18.3

2See section SM2 of the supplementary material for further discussion of numerical considerations.
3Our implementation utilizes two heuristic approaches, which, while not affecting the asymptotic analysis,

result in significant performance gains: for sufficiently small r we use a direct convolution approach instead of
the FFT [27, 52], and for edges of size r we use a direct approach identical to the uniform hypergraph case [7].
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2 4 8 16 32 64
0

100
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mathoverflow
2 4 8 16

0
100

101

102
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MAG-10
2 4 8 16

0
100

101

102

103

DAWN
2 4 8 16 32 64

100

101

102

103

cooking

2 4 8 16
0

100

101

102

103

walmart-trips
2 4 8 16 32 64

101

102

103

trivago-clicks
2 4 8 16 32 64

101
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103

stackoverflow
2 4 8 16

100
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102

103

amazon-reviews

explicit ordered unordered gen. FFT
r

tim
e 

(s
)

Figure 3. Runtimes of TTSV1 algorithms.

Having established the superiority of TTSV1-Unord, we study its performance on the
hyperedge level as a function of hyperedge size and r. We select DAWN and cooking, as their
hyperedge distributions differ substantially. Figure 4 presents timing results for TTSV1-Gen,
as well as the hyperedge size distributions. For DAWN, the bulk of the compute time for most
values of r is spent on edges with sizes 3\leq | e| \leq 6, yet the per-hyperedge runtime for edges in
this range is relatively fast. These observations are reconciled by the fact that the edge degree
distribution is right-skewed. For cooking, the edge size distribution is even more right-skewed,
but also has a mode at | e| = 9, exceeding that of DAWN, which is 3. As a result, most of the
runtime is concentrated around edges of size 8 \leq | e| \leq 17. However, the per-edge runtime is
still dominated by the larger edges for higher values of r. Note that many edge sizes beyond
36 are not present in the dataset, yielding the white striations in the runtime plots.

4.2. Centrality. Our TTSV algorithms may be utilized to compute nonlinear hypergraph
centralities. Here, we discuss several such centrality measures in the nonuniform setting,
apply the relevant Perron--Frobenius theory guaranteeing their existence, and then compute
them4 on data and illustrative toy examples to show they yield meaningful, complementary
information to existing centrality measures. We focus on the tensor-based Z-eigenvector
centrality (ZEC) and H-eigenvector centrality (HEC) introduced by Benson [8] for uniform
hypergraphs. Here, the centrality cu of node u depends on the sum of products of its neighbors'
centralities. Using the formalism of hyperedge blowups, we note that this same concept may
be applied to nonuniform hypergraphs where ZEC and HEC satisfy

4Our centrality code is available at https://github.com/pnnl/GENTTSV.
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Figure 4. Total (left) and per-edge (middle) runtimes for hyperedge size | e| as a function of rank r, and
hyperedge size distributions (right) for DAWN and cooking.

\sum 
e\in E(u)

\sum 
x\in \beta (e)

\Biggl[ 
1
cu

\prod 
v\in x

cv

\Biggr] 
= \lambda cu,

\sum 
e\in E(u)

\sum 
x\in \beta (e)

\Biggl[ 
1
cu

\prod 
v\in x

cv

\Biggr] 
= \lambda cr - 1

u ,

respectively. Note that these differ in that the second preserves dimensionality on both sides
of the equation. Both of these problems can be cast as eigenvector problems whose existence,
as we soon show, is guaranteed if the hypergraph is connected.

Definition 4.1 (Z- and H-eigenvector centrality (ZEC and HEC)). Let H be a connected, rank
r hypergraph with adjacency tensor \bfscrA . The Z- and H-eigenvector centrality of H is given by
a vector \bfc with | | \bfc | | 1 = 1 satisfying

\bfscrA \bfc r - 1 = \lambda \bfc ,

\bfscrA \bfc r - 1 = \lambda \bfc [r - 1],

respectively, for some eigenvalue \lambda > 0.

While the basic pattern of nonlinearity afforded by these methods is the same in the uni-
form and nonuniform hypergraph settings, the intuition behind these measures differs slightly.
For ZEC in the uniform setting, the centrality of a node is proportional to the sum of products
of the centralities of all nodes in edges that contain it. In the nonuniform setting, however, the
importance of a node derives from multiplying the centralities of other nodes within all pos-
sible blowups of the containing hyperedges. Despite this apparent ``unevenness"" in how node
importance is computed in the product, considering all possible blowups ensures there is no
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TENSOR METHODS FOR NONUNIFORM HYPERGRAPHS 495

artificial bias to any node within the hyperedge. HEC proceeds similarly, except the polyno-
mials on both sides of the equation have the same degree for every term---a desirable property
whenever dimensionality preservation is important, such as in physics-based applications.

The Perron--Frobenius theory guarantees the existence of the Z- and H-eigenvectors for
the nonuniform hypergraph adjacency tensor\bfscrA as follows: recall, from [45], that an order k, n-
dimensional tensor \bfscrX is irreducible if the associated directed graph (V,E) with V = \{ 1, . . . , n\} 
and

E = \{ (i, j) : there exists I = \{ i2, . . . , in\} with j \in I and \bfscrX ii2...ik \not = 0\} ,

is strongly connected. Via the symmetry of \bfscrA , it easily follows that its associated digraph is
precisely the hypergraph's clique expansion, in which every directed edge (i, j) is reciprocated
by an edge (j, i). Consequently, defining a connected hypergraph as one whose clique expansion
is connected, the Perron--Frobenius theorem for nonnegative tensors [45, Theorem 3.11, p. 50]
is applicable to connected, nonuniform hypergraphs as follows.

Theorem 4.2 (Perron--Frobenius theorem for the hypergraph adjacency tensor [45]). If H is
a connected, rank r hypergraph with adjacency tensor \bfscrA , then there exist

\bullet Z-eigenpair \lambda > 0,\bfx > 0 satisfying \bfscrA \bfx r - 1 = \lambda \bfx , and
\bullet H-eigenpair \lambda > 0,\bfx > 0 satisfying \bfscrA \bfx r - 1 = \lambda \bfx [r - 1], where \lambda is the largest H-
eigenvalue of \bfscrA and \bfx is unique up to scaling.

Observe here that uniqueness up to scaling is only guaranteed for H-eigenpairs, the theory
of which is generally stronger than that for the Z-counterparts. Having established the nec-
essary theory, we now provide implementation details. ZEC is computed using a dynamical
system approach proposed by Benson and Gleich in [9]. Specifically, we have

[\bfscrA \bfx r - 2]\bfx = \lambda \bfx \Leftarrow \Rightarrow \bfscrA \bfx r - 1 = \bfx ,

which is the same as requiring that the system

dx

dt
=\Lambda (\bfscrA \bfx r - 2) - \bfx 

BG: Z-eigenvector centrality NQZ: H-eigenvector centrality
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Figure 5. Kendall \tau B rank correlation coefficient of ZEC, HEC, and CEC for the top k nodes.

have a steady state solution, where \Lambda maps a matrix to its dominant eigenvector. Conse-
quently, any forward integration scheme can be applied together with an eigenvector solver
to get a tensor eigenvector through a nonlinear matrix eigenvector problem. BG presents a
concrete instantiation of the Benson--Gleich approach, which utilizes TTSV2 as a subroutine.
For HEC, we use a power-iteration like method along the lines of Ng, Qi, and Zhou [40],
presented in NQZ, which relies on the calculation of TTSV1 as a subroutine.

Applying these algorithms to DAWN and cooking, we now address three questions: (1) do
our nonuniform hypergraph centrality measures provide different centrality scores in practice
from existing methods?, (2) how do these rankings change as we vary the maximum hyperedge
size r?, and (3) can these measures detect higher-order structure in hypergraphs that is inex-
pressible in graphs and therefore undetectable by clique expansion and associated approaches?
Section SM3 of the supplementary material presents additional case-study for cooking and
DAWN.

4.2.1. Tensor centralities provide complementary information. We compare ZEC and
HEC scores against each other, and against clique expansion centrality (CEC): the dominant
eigenvector of the weighted clique expansion adjacency matrix [8]. We compare the ordinal
rankings induced by ZEC, HEC, and CEC by computing Kendall's \tau B rank correlation coeffi-
cient among the top k ranked vertices. Figure 5 presents the results for DAWN and cooking for
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Figure 6. Node rank persistence of the top 10 nodes under ZEC, HEC, and CEC for DAWN and cooking.
Purple indicates a rank change from r - 1, and yellow indicates no change.

both the full, unfiltered data (r = 22 and 65, respectively), as well as for the r = 3 filtering.
We observe that CEC rankings are relatively uncorrelated with those of HEC and ZEC, and
that no pair of measures exhibits a consistent level of correlation among the top k ranked
vertices. When compared against each other, ZEC and HEC are either weakly correlated or
uncorrelated, suggesting they provide different information in practice. Lastly, the differences
between r= 3 and the unfiltered data suggest these correlations are sensitive to filtering.

4.2.2. Persistence in tensor centrality. Next, we study the persistence of rankings in-
duced by ZEC, HEC, and CEC. In particular, we perform an LEQ filtering sweep for r ranging
from 2 to the maximum hyperedge size, and record whether the rank of each of the top 10
nodes changes as we increase r. Figure 6 presents the results for DAWN and cooking, where
purple indicates rank change from r - 1, yellow indicates no change, and the top row lists the
number of new nodes in the top 10. For DAWN, CEC and HEC rankings quickly stabilize, show-
ing no changes after r= 5 and 4, respectively. In contrast, ZEC rankings stabilize more slowly
at r= 14. For all three centrality measures, however, stabilization occurs before the maximum
hyperedge size at r = 22, echoing the claim in [8] that higher-order information is sometimes
well captured by hyperedges that are ``medium"" to ``small"" relative to the largest hyperedge.
Consequently, for larger data (such as mathoverflow) where the maximum hyperedge size is
prohibitively large for our algorithms, analyses may still be satisfactorily performed on a fil-
tering to smaller hyperedges. This is, of course, dataset and question-dependent, as evidenced
by the persistence results for cooking: here, HEC rankings continue to show instability across
larger r, whereas ZEC and CEC rankings both stabilize around r = 18. This highlights how
these tensor centralities can differ from matrix analogues as well as from each other.

4.2.3. Tensor centrality distinguishes Gram mates. Having shown that the tensor-based
ZEC and HEC provide different information than the matrix-based CEC, we now investigate
whether ZEC and HEC capture higher-order structure that is inexpressible by the hypergraph's

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Hypergraph S (b) Hypergraph R

(c) Weighted clique expansion of S and R (d) Weighted line graph of S and R

Figure 7. Two nonisomorphic hypergraphs with identical weighted clique expansions and identical line graphs.

4.2.3. Tensor centrality distinguishes Gram mates. Having shown the tensor-based ZEC
and HEC provide different information than the matrix-based CEC, we now investigate
whether ZEC and HEC capture higher-order structure that is inexpressible by the hyper-
graph’s clique expansion graph. To address this more nuanced question, we analyze highly
structured families of hypergraphs called Gram mates [30, 31]. Gram mates are pairs of
hypergraphs having incidence matrices S and R satisfying

SST “ RRT ,

STS “ RTR.

Interpreted combinatorially, SST “ RRT means the codegree of any pair of vertices in S
is the same as that in R, thereby yielding identical weighted clique expansions. Similarly,
STS “ RTR guarantees each pair of hyperedges has the same intersection cardinality in one
hypergraph as in the other, meaning their weighted line graphs are identical. Figure 7 presents
a small example derived from [30, 39] of non-isomorphic Gram mate hypergraphs alongside
their weighted clique expansion and line graphs. We emphasize many existing hypergraph
measures and matrices cannot distinguish between these two hypergraphs. For example:

‚ The singular values of the incidence matrices S and R.

Figure 7. Two nonisomorphic hypergraphs with identical weighted clique expansions and identical line graphs.

clique expansion graph. To address this more nuanced question, we analyze highly structured
families of hypergraphs called Gram mates [30, 31]. Gram mates are pairs of hypergraphs
having incidence matrices S and R satisfying

SST =RRT ,

STS =RTR.

Interpreted combinatorially, SST = RRT means the codegree of any pair of vertices in
S is the same as that in R, thereby yielding identical weighted clique expansions. Similarly,
STS = RTR guarantees each pair of hyperedges has the same intersection cardinality in one
hypergraph as in the other, meaning their weighted line graphs are identical. Figure 7 presents
a small example derived from [30, 39] of nonisomorphic Gram mate hypergraphs alongside
their weighted clique expansion and line graphs. We emphasize that many existing hypergraph
measures and matrices cannot distinguish between these two hypergraphs. For example:

\bullet The singular values of the incidence matrices S and R.
\bullet Bolla [13] and Rodriguez's [46] hypergraph Laplacian, Cardoso's signless Laplacian

[15], the hypergraph adjacency matrix [14, 37], and s-line graphs [2].
\bullet Gibson's dynamical system for categorical data and hypergraph clustering [23].
\bullet The hypergraph core/periphery, structural equivalence, and centrality methods de-

rived from the ``dual-projection"" approach advocated for in [22].
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\bullet Bipartite projection based analyses, such as bipartite modularity [5].
In contrast to the above, ZEC and HEC do distinguish between the two hypergraphs in

Figure 7. In particular, letting \bfx S and \bfx R denote the centrality vectors for either ZEC or
HEC applied to hypergraphs S and R, we have that

\bfx S(u) = \bfx R(u) for u=C,D,

\bfx S(u)> \bfx R(u) for u=E,F,

\bfx S(u)< \bfx R(u) for u=A,B.

4.3. Clustering. Our TTSV algorithms also enable computation of hypergraph tensor
embeddings, which may then serve as features for many clustering algorithms, such as k-means.
Following this approach, we aim to embed the hypergraph adjacency tensor \bfscrA in \BbbR n\times q, where
q is the target embedding dimension, so that each node is represented by a q-dimensional
vector. We perform the embedding by finding a symmetric CP-decomposition [26, 32] of \bfscrA ,
meaning we seek an n\times q matrix \bfE and a vector \bfitlambda \in \BbbR q such that the tensor norm given by

f(\bfitlambda ,\bfE ) = | | \bfscrA  - \bfscrX | | with \bfscrX =

q\sum 
j=1

\bfitlambda j\bfE 
\otimes r
j(4.1)

is minimized, where \bfE = [\bfE 1\bfE 2 \cdot \cdot \cdot \bfE q] and \bfE \otimes r
j is the r-way tensor outer product of \bfE j with

itself. To optimize (4.1), we employ a standard first-order optimization scheme and utilize the
closed-form expressions [32] for the gradients

\partial f

\partial \bfitlambda j
= - 2

\Biggl[ 
\bfscrA \bfE r

j  - 
q\sum 

k=1

\bfitlambda k\langle \bfE j ,\bfE k\rangle r
\Biggr] 
,

\partial f

\partial \bfE j
= - 2d\bfitlambda j

\Biggl[ 
\bfscrA \bfE r - 1

j  - 
q\sum 

k=1

\bfitlambda k\langle \bfE j ,\bfE k\rangle r - 1\bfE k

\Biggr] 
,

where \langle \bfE j ,\bfE k\rangle = \bfE T
j \bfE k, \bfscrA \bfE r

j =
\sum n

i1=1 \cdot \cdot \cdot 
\sum n

ir=1\bfscrA i1,...,ir

\prod r
k=1\bfE jik

is the TTSV operation
which results in a scalar. Note that the TTSV value is obtained from the TTSV1 vec-
tor simply by taking an inner product with \bfE j . In the first order scheme, computing f and
its derivatives explicitly requires O(qnr) time, but we use TTSV1-Gen, together with the
gradient computation approach outlined in [48], to cut this time down to O(TTSV1 + nq2),
where O(TTSV1) is the worst-case runtime of TTSV1-Gen. After obtaining this CP decom-
position for \bfscrA , the resulting embedding E \in \BbbR n\times q may be used as features for a standard
k-means clustering algorithm [24] or more generally within any metric-space clustering frame-
work. Instead of clustering \bfscrA directly, we cluster the corresponding normalized Laplacian
tensor \bfscrL from [6], given by

\bfscrL p1...pr
=

\left\{       
 - 
\Bigl[ \prod r

j=1 d(vpj
) - 1/r

\Bigr] 
| e| 

| \beta (e)| if p1 . . . pr \in \beta (e),
1 if p1 = p2 = \cdot \cdot \cdot = pr,

0 otherwise.

It is worth noting that \bfscrL does not equally weight all blowups of an edge, and so TTSV1-Gen
cannot be directly applied. However, if \bfd is the vector of all degrees, we have that \bfscrL \bfx r =
\bfscrI \bfx r  - \bfscrA (\bfd [ - 1/r] \odot \bfx )r and, more generally, \bfscrL \bfx r - k = \bfscrI \bfx r - 1  - (\bfd [ - 1/r])\otimes k \odot \bfscrA (\bfd [ - 1/r] \odot \bfx )r - k,
where \odot is the appropriate elementwise (Hadamard) tensor product.
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(a) t-SNE of embedding for the normalized Laplacian
of the clique expansion (left) vs. normalized Laplacian
tensor of the hypergraph (right) of cooking

(b) t-SNE of embedding for the normalized Laplacian
of the clique expansion (left) vs. normalized Laplacian
tensor of the hypergraph (right) for DAWN

Figure 8. Comparison of matrix [55] to tensor embedding of cooking (left) and DAWN (right).

We now apply the aforementioned clustering approach to cooking and DAWN. To better
reveal clusters, we filter out high-degree nodes that appear in more than 20\% of the hyperedges.
We color nodes based on hyperedge type metadata, assigning each node to the majority color of
hyperedge it appears in. To better reveal node colors and speed up the computations, we also
filter out hyperedges above size r= 8. Figures 8a and 8b present t-SNE [50] plots visualizing
embeddings of these datasets. For each dataset, the left visualization presents the matrix-
based embedding using the normalized Laplacian [19] of the hypergraph's clique expansion
graph,5 while the right shows the normalized Laplacian tensor embedding of the hypergraph.
For both datasets we observe starkly different geometry between the t-SNE representations of
the matrix and tensor embeddings, providing qualitative evidence that these two approaches
are capturing different features of the hypergraph cluster in practice.6

5. Conclusion and future work. We developed a suite of algorithms for performing fun-
damental tensor operations on the nonuniform hypergraph adjacency tensor. Improving upon
approaches that are intractable in time and space complexity, we developed efficient, implicit
methods tailored to exploit the nuanced symmetry of the adjacency tensor. We then demon-
strated how these algorithms give rise to fundamental tensor-based hypergraph analyses, such
as centrality and clustering, which hold promise in capturing hypergraph-native structure
over existing matrix-based approaches. Our exploration here is not comprehensive, and many
avenues remain for future work. First, we note that the hypergraph adjacency tensor we
utilized is defined for simple, unweighted, nonuniform hypergraphs. Real data may pres-
ent multiple hyperedges, weights, vertex multiplicities within a hyperedge, or directionality.
Extending our methods to accommodate such cases in a principled manner would be ad-
vantageous. Second, our application of TTSV algorithms to perform hypergraph analyses is
cursory and leaves a number of exciting possibilities to future work: how might one develop
multilinear tensor PageRank for nonuniform hypergraphs, or use our algorithms in supervised
and semisupervised machine learning problems, such as node classification and link predic-

5We also used this embedding to initialize the iterative scheme to obtain the tensor embedding.
6No effort was made to tune the performance of either clustering algorithm or evaluate which clustering is

``better."" Indeed, understanding which hypergraph structural features are highlighted by the CP decomposition
of \bfscrL is a compelling open question for future work. In particular, the effectiveness of spectral clustering is
explainable in part by the tight connection between Laplacian spectra and the combinatorial properties of
the graph captured by the Cheeger inequality. The authors are unaware of any similar known results for the
nonuniform adjacency tensor (Laplacian or otherwise) associated with a hypergraph.
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tion? Furthermore, it seems plausible that our generating function approach to exploiting
symmetry in the hypergraph adjacency tensor could be extended to other tensor operations:
for instance, the Tucker decomposition involves repeatedly performing a tensor times same
matrix operation [21, 28]. Lastly, despite the current approach being tailored to hypergraphs,
we believe that generating-function-based tensor algorithms similar to the ones we presented
may have utility in general symmetric tensor problems beyond the context of hypergraphs.

Acknowledgments. We thank Tammy Kolda, Jiajia Li, and Shruti Shivakumar for help-
ful discussions on tensor decompositions, and Yosuke Mizutani for his assistance in drawing
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