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Abstract—In recent years, graph theoretic considerations have
become increasingly important in the design of HPC interconnec-
tion topologies. One approach is to seek optimal or near-optimal
families of graphs with respect to a particular graph theoretic
property, such as diameter. In this work, we consider topologies
which optimize the spectral gap. We study a novel HPC topology,
SpectralFly, designed around the Ramanujan graph construction
of Lubotzky, Phillips, and Sarnak (LPS). We show combinatorial
properties, such as diameter, bisection bandwidth, average path
length, and resilience to link failure, of SpectralFly topologies are
better than, or comparable to, similarly constrained DragonFly,
SlimFly, and BundleFly topologies. Additionally, we simulate the
performance of SpectralFly on a representative sample of micro-
benchmarks using the Structure Simulation Toolkit Macroscale
Element Library simulator and study cost-minimizing layouts,
demonstrating considerable benefit of the SpectralFly topology.

Index Terms—Graph theory, spectral gap, spectral expansion,
interconnection networks, Ramanujan graphs

I. INTRODUCTION

In recent years, a deluge of different interconnection net-
works have been proposed to address the critical role of
communication in modern HPC systems [1]–[7]. To efficiently
and robustly enable communication, many of these topologies
are designed to exhibit a plethora of beneficial structural prop-
erties. An ideal network will have low endpoint-to-endpoint
latency, resiliency to link failures, high bisection bandwidth
to avoid congestion – all while maintaining low-system cost.
Researchers have employed the language of graph theory
to formalize and quantify such properties. In this way, a
number of graph statistics – such as diameter, average distance,
vertex and edge-connectivity, and dense bipartitions – are well-
known to be critically important to the performance of the
computing system. However, constructing a graph topology
simultaneously optimizing these criteria is challenging.

One approach is to focus on finding families of graphs that
are extremal with respect to a particular property, with the hope
that optimization of that property guarantees acceptably good,
if not optimal, behavior with respect to the others. For exam-
ple, the SlimFly topology [1] was proposed with the claim
“it’s ALL about the diameter.” Specifically, the authors argued
that graphs which minimize the diameter while simultaneously
maximizing the number of vertices for a given radix also
exhibit other good properties, such as resilience to link failure
and high bisection bandwidth. However, how to construct such
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topologies (and whether they even exist) remains a challenging
and ongoing topic in mathematics [8]. Indeed, the SlimFly
topology is only made possible by a sophisticated algebraic
construction by McKay, Miller and Širáň [9], which has
nearly-optimal size with respect to degree-diameter condition.
SlimFly is far from the only proposed topology to take an
extremal approach; the well-known DragonFly [4] and associ-
ated variants aim to maximize performance while minimizing
system cost, utilizing a group of high-radix routers as a virtual
router to increase the network’s effective radix. And more
recently, a related topology called BundleFly [2] expands and
adapts the SlimFly for use with multicore fiber systems.

In this work, we propose that utilizing a graph construction
which optimizes the spectral gap – the difference between
the largest two eigenvalues of the adjacency matrix – yields a
broad family of flexible, balanced, low-cost, and congestion-
avoiding topologies. We call this family of topologies Spec-
tralFly, as they are examples of Ramanujan graphs which have
optimal spectral gap. As we explain, the spectral gap is a
highly nuanced and far-reaching indicator of graph structure,
controlling diameter, average distance, fault tolerance, neigh-
borhood expansion, and bisection bandwidth, among others. In
comparison to SlimFly, we show SpectralFly makes marginal
sacrifices in terms of diameter and average shortest path
length, while offering comparable or sometimes significantly
better properties, particularly in the case of bisection band-
width and related properties involving bottlenecks. While no
single topology can be optimal in every regard, our results
show SpectralFly is extremely competitive for many key struc-
tural factors, making it a good fit for a variety of workloads.

Our work is organized as follows: in Section II, we pro-
vide a brief overview of graph eigenvalues, the spectral gap,
and the Ramanujan property, establishing the importance of
the spectral gap as a consideration in HPC interconnection
network design. In Section III, we introduce the particular
family of Ramanujan graphs we utilize, known as LPS graphs,
providing the necessary definitions and examples, and high-
lighting some key LPS graph properties. Then, in Section IV,
we study structural properties of SpectralFly 1 in comparison
with SlimFly, BundleFly and DragonFly, across 5 classes
of topology sizes which range from roughly 100 vertices

1Forthcoming code for SpectralFly will, pending institutional approval, be
posted at https://github.com/pnnl/SpectralFly.
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to almost 10K vertices. Additionally, we also examine the
resilience of these properties under varying levels of edge
failures. Finally, in Sections V-VI, we validate the utility
of the structural advantages of SpectralFly by performing
simulations and experiments using the Structural Simulation
Toolkit Macroscale Element Library (SST/macro). We define
our routing algorithms in Section V, and evaluate several
micro-benchmarks with different topologies in Section VI.

Throughout, we use standard graph theory terminology
and consider only undirected graphs G = (V,E), where
V is a set of elements called vertices and E is a set of
unordered pairs of elements of V called edges. In the context
of interconnection networks, vertices represent routers, and
edges represent bidirectional links. The degree of a vertex is
the number of edges to which it belongs; we call a graph k-
regular if each vertex has degree k and sometimes refer to k
as the radix of the graph.

II. EIGENVALUES, EXPANSION, AND THE RAMANUJAN
PROPERTY

Graph eigenvalues capture a plethora of network properties
critical to the design and function of interconnection networks.
Diameter, bisection bandwidth, fault tolerance, average short-
est path length, and other structural properties are controlled
by eigenvalues; see [10], [11] for a survey. Here, we highlight
graph theoretic results establishing these connections in order
to explain why Ramanujan graphs possess superior structural
properties for interconnection network design.

Many such properties are controlled by a single eigenvalue:
if G is a k-regular graph with adjacency matrix A, this
eigenvalue, denoted λ(G), is the largest magnitude eigenvalue
of A not equal to ±k. The difference between the two largest
adjacency eigenvalues is sometimes called the “spectral gap”.
In case of k-regular graphs, this is the difference between
the second largest eigenvalue and k, as k is always the
largest eigenvalue. As we will soon explain, Ramanujan graphs
“optimize” the λ(G) and hence have large spectral gap.

Perhaps the most important property for our purposes here,
λ(G) controls the expansion properties of the graph. Loosely
speaking, expansion means every “not too large” set of vertices
has a “not too small” set of neighbors. The vertex isoperimetric
number of a graph, h(G), is one way of formalizing this:

h(G) = min
X⊆V (G)

2|X|≤|V (G)|

|∂X|
|X|

,

where ∂X denotes the neighbors of X that are not in X . Thus,
larger values of h(G) suggest better expansion properties.

The vertex isopermetric number, as well as related variants,
are closely linked to λ(G). In particular, Tanner [12] proved
a lower bound on h(G) for k-regular graphs in terms of this
eigenvalue, while Alon and Milman [13] gave an upper bound.
Such results suggest it is natural to measure expansion directly
in terms of eigenvalues themselves. We will concern ourselves
with this notion of expansion, called spectral expansion.

As smaller values of λ(G) mean better expansion properties,
it is natural to ask: what is the theoretical minimum of

(a) Low Bisection Bandwidth (b) Low Discrepancy

Fig. 1: Structures forbidden by high bisection bandwidth and discrep-
ancy. Bisection bandwidth only concerns edges crossing a bipartition
(blue shadow), while discrepancy also requires any two subsets (in
purple), are bottleneck-free.

λ(G)? The Alon-Boppana theorem [14] answers this question,
stating that for a k-regular graph with second largest (in
magnitude) adjacency eigenvalue λ and diameter D, we have
λ(G) ≥ 2

√
k − 1 (1− 2/D)−2/D. Consequently, if (Gi)∞i=1 is

a family of connected, k-regular, n-vertex graphs with n→∞
as i → ∞, then, lim infi→∞ λ(Gi) ≥ 2

√
k − 1. We call a

graph Ramanujan if it achieves this theoretical minimum, i.e.,
is an optimal spectral expander.

Definition 1. A k-regular graph G is called Ramanujan if
λ(G) ≤ 2

√
k − 1, where λ(G) denotes the largest magnitude

adjacency eigenvalue of G not equal to ±k.

As a consequence of their optimal spectral expansion,
Ramanujan graphs possess a plethora of beneficial structural
properties discussed in [10]. In particular, the Ramanujan prop-
erty guarantees at least nearly optimal bisection bandwidth.

While we emphasize this near-optimality of bisection band-
width in this work, we note the Ramanujan property guarantees
something much stronger: it bounds the number of edges
between any collection of vertices, not just bisections. This
stronger property is called the discrepancy inequality [15].
Simply put, this means large spectral gap implies two arbitrary
subsets of the network are bottleneck-free; see Fig. 1 for a
cartoon of substructures forbidden by the discrepancy property.

While we will not explicitly design the experiments of
Section VI to emphasize the impact of the discrepancy prop-
erty, in practice, this is likely to be an important property
for the practical usage of the systems. In particular, as the
discrepancy property assures that given an arbitrary collection
of vertices involved in a computation the bisection bandwidth
on the topology restricted to those vertices is still high, we
expect systems designed around Ramanujan graph topologies
will be less susceptible to performance degradation based on
job schedule and inter-job contention as illustrated in [16].
Additionally, we note that the discrepancy property will likely
mitigate the benefit of routing strategies such as Valiant that
attempt to homogenize traffic across the network. In particular,
as high discrepancy networks are optimally bottleneck-free,
this minimizes the advantage of homogenizing network traffic.

a) Related work in HPC: As evidenced by the rela-
tionships between eigenvalues and other structural properties
highlighted above, it is unsurprising some HPC topologies
consider spectral expansion implicitly in their network design.
The well-known randomized Jellyfish topology has strong,
albeit not optimal, spectral expansion properties. However,
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random k-regular graphs are “sub Ramanujan” as shown by
Friedman’s proof [17] of Alon’s second eigenvalue conjecture
[14]; hence SpectralFly has superior spectral expansion over
JellyFish. Further, as discussed in [7], the unstructuredness
of randomized constructions such as Jellyfish makes “them
hard to reason about (predict, diagnose), build (e.g., in terms
of wiring complexity), and so poses serious, arguably insur-
mountable, obstacles to their adoption in practice.”

Next, we briefly mention other work explicitly considering
notions of spectral expansion or Ramanujan graphs in an HPC
setting. In [10], the authors survey a wide swath of super-
computing topologies and derive either asymptotic bounds or
exact expressions for their spectral gap, which shows many
supercomputing topologies are far from Ramanujan. In this
work, we aim to realize the theoretical potential suggested in
[10] through SpectralFly, which has optimal spectral gap. So
called (α, β, n, d)−expanders are utilized to construct “multi-
butterfly” networks [18], and later, “metabutterfly” networks
[19], which aim to mitigate wiring complexity. Valadarsky
et al [20] propose “Xpander”, a general construction in the
context of datacenter design. Xpander is based on the theory
of graph lifts [21] which, via derandomization procedures, may
generate deterministic almost-Ramanujan graphs. Theoretical
work by Marcus, Spielman and Srivastava [22] suggests it may
be possible to explicitly generate Ramanujan graphs utilizing
k-lifts via sophisticated interlacing polynomial techniques.

III. SPECTRALFLY TOPOLOGY CONSTRUCTION

Constructing explicit families of Ramanujan graphs is an
ongoing topic of research. The first constructions were by
Lubotzky, Phillips and Sarnak [23], and independently, by
Marguilis [24]. In 2013 and 2015, Marcus, Spielman and
Srivastava [22], [25] gave new constructions of bipartite Ra-
manujan graphs. For more on these constructions, see [10].

Here, we focus on the construction by Lubotzky, Phillips
and Sarnak, which we refer to as LPS graphs. These are the
graph topologies underlying a SpectralFly network. Hence,
when studying graph-theoretic properties, we use the terms
“SpectralFly” and “LPS” interchangeably. When interpreted as
a network, a vertex of an LPS graph corresponds to a router,
and edges between vertices correspond to bidirectional links.
While fully-realized SpectralFly networks must also specify
endpoint concentration (see Section VI), in this section we
focus on the core LPS topology formed by the routers.

We utilize an extension of the original LPS graphs provided
by Morgenstern [26]. LPS graphs are examples of graphs
encoding algebraic group structure, called Cayley graphs.

Definition 2 (Cayley Graph). The Cayley graph, Cay(G, S),
of a group G and symmetric is a graph on vertex set V = G
and edge set E = {{u, v} : u−1v ∈ S}.

An LPS graph is a particular Cayley graph where both the
group and the generating set S depend on number-theoretic
properties of two input values, p and q, as defined below.

0 1
1 2

1 2
0 2

1 3
4 4

1 4
3 0

1 1
1 4

(
1 1

2 4

)(
1 4
3 4

)

(
1 2

1 4

) (
1 3
4 4

)

Fig. 2: Neighborhood of a vertex in LPS(3, 5). Vertices are from
PGL(2,F5) labeled by a representative matrix from the coset; edges
{u, v} are labeled by a generating element u−1v.

Definition 3 (LPS Graphs). The LPS graph LPS(p, q) is a
Cayley graph defined for distinct odd primes p, q. To define
the generator set, let x, y be solutions to x2 + y2 + 1 = 0
(mod q), and D be the set of solutions (α0, α1, α2, α3) to
α2
0 + α2

1 + α2
2 + α2

3 = p which satisfy

• α0 > 0 is odd, if p ≡ 1 (mod 4)

• α0 > 0 is even, or α0 = 0 and α1 > 0, if p ≡ 3 (mod 4).

The generating set S of LPS(p, q) consists of all matrices[
α0 + α1x+ α3y −α1y + α2 + α3x
−α1y − α2 + α3x α0 − α1x− α3y

]
,

where (α0, α1, α2, α3) ∈ D. The group G of LPS(p, q) is

G =

PSL(2,Fq) if
(
p
q

)
= 1

PGL(2,Fq) if
(
p
q

)
= −1

,

where
(
p
q

)
is the Legendre symbol, and PSL and PGL are the

projective special and linear groups, respectively. If q > 2
√
p,

then LPS(p, q) is a (p+ 1)-regular Ramanujan graph.

For those unfamiliar with algebraic graph theory or number
theory, a full understanding of the details within the pro-
ceeding definition is unnecessary for the purposes of this
work (see [27]). Nonetheless, we include this definition as
a self-contained description of the LPS topology. Similarly
for completeness and to help garner understanding, we briefly
illustrate how to generate LPS graphs in practice with an
example below, and include a visualization in Figure 3. For
a full tutorial on LPS graph generation, see [28].

Example 1. Let (p, q) = (3, 5). These are valid inputs for
an LPS graph because p, q are distinct, odd primes and 5 >
2
√
3. Since x2 6≡ 3 (mod 5) for any x, the Legendre symbol(

3
5

)
= −1 and hence the group is PGL(2,F5) where F5 =

{0, 1, . . . , 4}. The elements of PGL(2,F5) are cosets of 2×2
matrices with elements in F5 and nonzero determinant such
that A,B are in the same coset if A = xB for some nonzero
x. For example, the element

v =

{[
0 1
1 2

]
,

[
0 2
2 4

]
,

[
0 3
3 1

]
,

[
0 4
4 3

]}
represents a single element of PGL(2,F5), and hence a single
vertex of the graph LPS(3, 5).

Next, we construct the generating set S. As p ≡ 3 (mod 4),
we are interested in solutions of α2

0+α
2
1+α

2
2+α

2
3 = 3 where

either α0 > 0 and is even, or α0 = 0 and α1 > 0. There are
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no solutions of the former type; solutions of latter type are:
(0, 1, 1, 1), (0, 1,−1,−1), (0, 1,−1, 1), (0, 1, 1,−1).

Finally, using (x, y) = (0, 2) as a solution to x2 + y2 +1 = 0
(mod 5), the elements of the generating set S may be con-
structed. For example, the coset for the generator s ∈ S
corresponding to the solution (0, 1, 1, 1) is{[

1 2
1 4

]
,

[
2 4
2 3

]
,

[
3 1
3 2

]
,

[
4 3
4 1

]}
.

LPS(3, 5) is then constructed by creating edges between u, v ∈
PGL(2,F5) whenever us = v for s ∈ S. Figure 2 illustrates
the neighborhood of a certain vertex in LPS(3, 5), labeling
edges by the associated element s ∈ S.

There are several reasons for selecting LPS graphs amongst
currently proposed Ramanujan constructions. First, LPS
graphs are flexible in terms of feasible sizes and radix values.
Figure 4 (left) plots radix and vertex counts for all possible
LPS graphs generated with inputs p, q < 300. While, like
almost any structured family of topologies, some radix and
vertex count combinations are infeasible, the absence of large
gaps in the plot suggests the high likelihood of finding an
LPS graph “acceptably close” to any given desired radix and
vertex count combination. As discussed further in Section IV,
this flexibility stands in contrast to many competing graph
topologies. LPS graphs afford users the ability to generate
arbitrarily large graphs for a given radix, whereas the sizes
of other topologies can only be increased via the radix.

Secondly, in addition to exhibiting the Ramanujan prop-
erty, LPS graphs possess other desirable characteristics. For
example, since LPS graphs are Cayley graphs, they are vertex-
transitive. Informally, this means every vertex has an identical
local environment, i.e. the graph “looks the same” from every
vertex. Thus, the 6 hop neighborhood of a vertex in LPS(3, 17)
seen in Figure 3 has an identical structure for all vertices.
Consequently, vertex-transitivity enables simplifications which
benefit the computational cost and design of routing protocols.
Their algebraic structure also affords other benefits, such as
optimal edge-connectivity (a key consideration for network
resiliency) as well as efficient algorithms by which topologies
on tens of millions of vertices may be easily generated [28].

In addition to possessing these properties by virtue of being
a Cayley graph, LPS graphs are also widely studied. Over the
past several decades, researchers have bounded or character-
ized the diameter, path length behavior, and fault tolerance of
LPS graph, making them attractive options for supercomputing
topologies, as argued in [10]. One such key property for
interconnection networks is bisection bandwidth. Figure 4
(upper right) presents the normalized bisection bandwidth
of LPS graphs for various sized topologies on radix values
between k = 4 and 98, divided by nk/2 to ensure a size-
agnostic comparison. We observe larger normalized bisection
bandwidth values are achieved for larger radix graphs, with
diminishing returns. In contrast to some other topologies we
survey, the bisection bandwidth doen’t decay as LPS graph
size increases per fixed radix, which is a consequence of the
Ramanujan property. Furthermore, larger normalized bisection

Topology Routers Router Diam. Dist. Girth µ1Radix
LPS(11, 7) 168 12 3 2.39 3 0.50
SF(7) 98 11 2 1.89 3 0.62
BF(13, 3) 234 11 3 2.56 3 0.27
DF(12) 156 12 3 2.70 3 0.08
LPS(23, 11) 660 24 3 2.35 3 0.65
SF(17) 578 25 2 1.96 3 0.64
BF(37, 3) 666 23 3 2.61 3 0.13
DF(24) 600 24 3 2.84 3 0.04
LPS(53, 17) 2448 54 3 2.32 3 0.74
SF(37) 2738 55 2 1.98 3 0.65
BF(97, 4) 3104 54 3 2.76 3 0.07
DF(53) 2862 53 3 2.93 3 0.02
LPS(71, 17) 4896 72 4 2.61 4 0.77
SF(47) 4418 71 2 1.98 3 0.66
BF(137, 4) 4384 74 3 2.76 3 0.05
DF(69) 4830 69 3 2.94 3 0.01
LPS(89, 19) 6840 90 4 2.61 4 0.80
SF(59) 6962 89 2 1.99 3 0.66
BF(157, 5) 7850 85 3 2.82 3 0.06
DF(85) 7310 85 3 2.95 3 0.01

TABLE I: Basic structural properties

bandwidth values are feasible for larger radix networks.

IV. STRUCTURAL PROPERTY COMPARISON

In order to understand the trade-offs between costs, diam-
eter, and bisection bandwidth we compare the combinatorial
properties of four topologies representing extreme points at or
near the design space Pareto frontier. Specifically, we consider
the DragonFly (optimizing cost and diameter), SlimFly (op-
timizing diameter and size), BundleFly (optimizing diameter
and cost), and LPS/SpectralFly (optimizing spectral gap).

Since random graph constructions, such as the aforemen-
tioned JellyFish, have sub-optimal spectral gap [17], and also
face serious challenges to adoption in practice due to their
unstructuredness, we limit our comparison to deterministic
topologies. Furthermore, we’ve selected topologies capable
of being scaled to beyond tens of thousands of vertices,
and which are flexible enough to generate instances with
similar size, radix and link counts to other topologies, in
order to ensure a fair comparison. Satisfying these criteria,
the topologies we consider are defined as follows:
• LPS(p, q): The topology underlying SpectralFly, LPS

graphs [23] are described in Definition 3. The radix is
p+1 and the number of vertices is

(
3−

(
p
q

)) (
q3−q/4

)
.

• SlimFly, SF(q): Studied in [1], SlimFly topologies are
based on the MMS graph construction by McKay, Miller
and Širáň [9]. For a description of the MMS graph
construction, see [29]. The number of vertices is 2q2 and
radix is 3q−δ

2 , where q = 4k + δ for δ ∈ {−1, 0, 1}.
• BundleFly, BF(p, s): a multi-star product of an MMS

graph with parameter s and Paley graph with parameter
p – see [2]. The number of vertices is 2ps2 and the radix
is p−1

2 + 3s−δ
2 where s = 4k + δ for δ ∈ {−1, 0, 1}.

• DragonFly, DF(a): while there are many DragonFly
variants (see [10], [30] for specifications), we consider
the “canonical” DragonFly topology consisting of a + 1
fully connected groups, each on a vertices. The number
of vertices is a(a+ 1) and the radix is a.
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Distance
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Fig. 3: Visualization of SpectralFly topology instances: the entire LPS(3, 7) graph (left) and the 6-hop neighborhood of a vertex in LPS(3, 17)
(right). Since LPS graphs are vertex transitive, the k-hop neighborhood of every vertex has the same structure. Furthermore, the local
neighborhood surrounding a vertex is a tree of variable depth depending on the inputs p, q. For instance, a shortest length cycle in LPS(3, 17)
is highlighted as blue, and utilizes vertices at distance 6 from the center vertex.
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Fig. 4: Possible number of vertices and radix of LPS for p, q <
300 (upper left), normalized bisection bandwidth of LPS for p, q <
100 (upper right), feasible topology sizes per radix (lower left), raw
bisection bandwidth comparison (lower right).

While it would be interesting to explore properties of Xpander
topologies here, applying complicated interlacing polynomial
approaches for their construction and the need to calculate the
set of all shortest paths for every pair of routers makes such
an evaluation impractical at scales of interest.

We consider 5 size classes for each topology, ranging from
100 vertices to 7K vertices. For each size class, we conduct a
parameter search to select the topology with closest radix and
number of vertices relative to the others in that class. Table I
shows the 4 topologies within each size class have very close
radix, and fairly close node counts ensuring a fair comparison
of the performance based on the structural properties of these
networks in our subsequent experiments. The topologies also
have similar girth (length of the shortest cycle), with larger

LPS topologies being the sole examples of girth 4 topologies.
a) Feasible topology sizes per radix: The LPS con-

struction accommodates a variety of radix and node size
combinations. In general, Ramanujan graphs of any size are
possible; however the smallest possible LPS graph is on 120
vertices. Fig. 4 (lower left) plots possible vertex count and
radix combinations. For SlimFly and canonical DragonFly, a
large, low-radix topology is impossible, as the radix uniquely
determines the topology size. BundleFly allows multiple pos-
sible vertex sizes per radix, but the choice of radix constrains
the possible vertex sizes. The green points plot the maximum
possible number of vertices per each feasible BundleFly radix.
Some of maxima drop off sharply for certain radix values,
suggesting the range of possible sizes may be unstable.

b) Diameter and average path lengths: As summarized
in Table I. SlimFly always has diameter 2, while BundleFly
and DragonFly have diameter 3. In contrast, the diameter
of LPS graphs depends on the topology size; numerical
experiments from [31] suggest this diameter is asymptotic to
(4/3) log5(n). LPS has the second smallest average shortest
path length (i.e. distance) across all size classes, in spite of
sometimes having the largest diameter (for the fourth and fifth
size classes). This gap between diameter and average distance
suggests “most” pairs of vertices in LPS graphs may be closer
in distance than the diameter. This is also apparent in Figure
3’s visualization of LPS(3, 7), where relatively fewer vertices
appear at distance equal to the diameter from the center vertex.
Indeed, recent work by Sardari [31] proved for any k-regular
Ramanujan graph, only a tiny fraction of all pairs of vertices
have distance greater than (1+ε) logk−1(n). Furthermore, for
each vertex x, the number of vertices at distance greater than
this exponentially decays, being less than n1−ε.

c) Normalized Laplacian spectral gap, µ1: To enable
cross-size comparison, we compute the normalized Laplacian
spectral gap, µ1, related to the second largest adjacency eigen-
value λ by µ1 = k−λ/k, where k is the radix. Whereas smaller
values of λ ensure better spectral expansion, this is associated
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with larger values of µ1. Compared with SlimFly and LPS,
Table I shows BundleFly and DragonFly with smaller values
of µ1, which decay for larger sized topologies. As proven
in [10], the second normalized Laplacian eigenvalue of the
SlimFly topology SF(q) is 2

3+δ/q
~ 2

3 . Since LPS graphs are

Ramanujan, they have µ1 at least as large as k−2
√
k−1

k . Thus
an LPS graph with radix k ≥ 35 is guaranteed to have larger
µ1 than any SlimFly topology. LPS graphs with smaller radix
values may still have larger µ1 (as seen in the second size
class in Table I) or smaller µ1 (as seen in the first size class).

d) Bisection bandwidth: We use METIS [32] to approx-
imate bisection bandwidth, establishing an upper bound given
by the points in Fig. 4 (lower right). We also compute a lower
bound from [33], BW(G) ≥ λ1kn

4 , where k is the radix and
n is the number of vertices. The exact bisection bandwidth
lies between these points, represented by the shaded regions.
Recall we are considering the router topology, without regard
to a specific concentration. While one can further analyze
bisection bandwidth under a particular concentration level,
the relative orderings we observe here also hold whenever
chosen concentration levels are equal, and so we omit this
design choice for clarity and simplicity. As seen in Fig. 4
in log-scale, as the size of SlimFly topologies increase, the
gap between its normalized bisection bandwidth and that of
a similar radix LPS widens further. SpectralFly has up to a
39% increase in bisection bandwidth over SlimFly. This can
be confirmed analytically: applying bounds from [10], the
normalized bisection bandwidth of SlimFly is asymptotically
1/3. LPS graphs have normalized bisection bandwidth at least
k−2
√
k−1

2k , guaranteeing an LPS graph with k ≥ 36 has larger
normalized bandwidth than any SlimFly. We emphasize this
is a lower bound; the normalized bisection bandwidth of LPS
graphs computed by METIS exceeds 1/3 around radix 18.
A. Structural Properties Under Link Failures

We also examine how these structural properties vary under
link failures of varying magnitudes.For each topology, we
delete k proportion of its edges, chosen randomly. Our results
are averaged over sufficiently many trials.2 We run these exper-
iments for “small”, 600 vertices, instances of each topology, as
well as intermediate sized topologies on 5K vertices. Figure 5
presents the results for diameter, mean distance, and bisection
bandwidth. Note these measures are only well-defined for
connected topologies; however, all four topologies remain
consistently connected for small (left column) and medium
(right column) sizes under random link failures until 60% and
80%, respectively, of edges are deleted. Thus, we only consider
edge deletion proportions up until this disconnection threshold.
With regard to diameter, SlimFly has the smallest value of 2
of the topologies surveyed. However, at 10% edge failure, this
diameter increases to 4, while LPS topologies exhibit slightly
smaller diameter. This suggests SlimFly diameter is more
fragile than that of LPS, congruent with our prior observation

2For each topology, proportion k, and structural property measured, we
increase the number of trials x in powers of 10 until the coefficient of variation
of sample means across 10 batches of x trials is less than 10%.
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Fig. 5: Structural properties under edge failures for comparable LPS,
SlimFly, BundleFly and DragonFly topologies on about 600 vertices
(left column) and 7K vertices (right)

that while nearly every pair of vertices in SlimFly is separated
by a 2 hop distance, only very few pairs of vertices in an
LPS graph achieve the diameter [31]. While LPS maintains a
slight edge over SlimFly for 10% edge failures, for 20-50%
edge failures they have comparable diameter, and for > 50%
SlimFly has slightly smaller diameter.

Lastly, for mean distance and bisection bandwidth, LPS
and SlimFly perform the best. SlimFly has the smallest mean
distance across all edge failure rates, with the gap between
LPS narrowing slightly as a higher proportion of edges fail.
For bisection bandwidth, LPS retains its larger bandwidth over
SlimFly; this gap narrows significantly beyond 20% failure.

In summary, LPS and SlimFly are consistently more re-
silient under random edge failures than BundleFly and Drag-
onFly with regard to diameter, average distance, and bisection
bandwidth. For diameter, LPS and SlimFly are comparable,
with LPS having slightly better diameter for 10% edge failures
and worse for 50% and above. For average distance and
bisection bandwidth, SlimFly retains lower hop count while
LPS retains superior bisection bandwidth.

V. ROUTING ALGORITHMS

We consider 3 types of routing strategies for SpectralFly:
shortest path routing (minimal), Valiant routing, and Universal
Global Adaptive (UGAL) routing. In minimal routing, given a
source-destination pair (s, d), a packet is forwarded along the
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routers on the shortest path from s to d. In theory, minimal
routing will minimize the overall latency of communication
thereby outperforming other routing schemes when the un-
derlying network has no congestion. However, in a congested
network, shortest paths may not be the best choice for routing.
This is especially true when the betweenness centrality scores
of a set of vertices (routers) in a graph (topology) are quite
high, meaning these set of vertices will be on the shortest paths
for many vertices in the graph. Consequently these vertices
will become the bottlenecks in a highly-saturated network.

Congestion concerns have prompted alternative routing
schemes which improve performance on various topologies.
One such alternative to shortest path routing is Valiant rout-
ing [34] which proceeds in two phases: given a source-
destination pair (s, d), a random intermediate router i is
chosen. The packet is then routed from s to i along a shortest
path. Once the packet arrives at i, the second phase forwards
the packet from i to d by following a shortest path.

However, Valiant routing ignores the current state of routers,
such as queue length. To ameliorate this, the UGAL family
of routing protocols selects dynamically between the minimal
path or a Valiant-style paths based on the current state of the
system. For example, in the UGAL-L variant, each router only
maintains information about the queue lengths of the local
outports. Using this information at the source, a packet is either
forwarded to a random intermediate node first or follows a
minimal path based on the queue sizes of the local random
outport and minimal outport and total hopcounts from the
source to the destination for these two possible routes.

A. Deadlock Avoidance

Due to limited resources on each router (buffer count, size,
etc.), cyclic dependencies can arise in the resource dependency
graph, where messages may try to flow from one router to the
next but also messages from the next router may try to flow
in the reverse direction. As the buffers fill up and traffic from
each router blocks each other in a cycle, this ultimately results
in a deadlock. Such deadlocks can be avoided primarily in
three ways: (1) by creating an acyclic routing scheme; (2) by
using virtual channels (VC) and changing the virtual channel
to route a packet on each network hop (by incrementing the
virtual channel on each network hop, deadlock-free routing can
be guaranteed); (3) by running a cycle-detection algorithm on
the routing graph beforehand. Each time a cycle is detected,
a new virtual channel is added to one of the routing edges,
continuing until there are no more cycles. We’ve chosen the
second approach to avoid deadlock based on virtual channels,
since it does not require any preprocessing of the topology
graph. We set the number of virtual channels to be equal to
the diameter of SpectralFly, d+1 for the shortest path routing
and (2d+ 1) for Valiant routing.

VI. SIMULATION RESULTS

In this section, we report our simulation results on evaluat-
ing SpectralFly, SlimFly, BundleFly and DragonFly topologies

with different workloads exhibiting interesting communication
patterns that are prevalent in many HPC applications.
A. Simulation Software

We conduct our experiments in the Structural Simula-
tion Toolkit (SST) Macroscale Element Library (SST/macro)
simulator [35]. Our simulation approach performs online
simulation, which involves skeletonization of an application
during the compilation step so that part of the application
involving communication (such as communication API calls,
MPI alltoall etc.) can be intercepted by the simulator during
runtime. The simulator replaces these calls with various built-
in network component model implementations. The applica-
tion can then run inside the simulator without any significant
change. The user can provide necessary hardware parameter
values (for routers, NICS, topologies, routing schemes etc.)
to the simulator for running the application with different
hardware configurations. We have used the Simulator Net-
work for Adaptive Priority Packet Routing (SNAPPR) network
model in SST/macro to evaluate different topologies. SNAPPR
implements coarse-grained cycle-based simulation to simulate
priority queue-based QoS. In addition, it can also restrict in-
jection rate of messages for congestion control. For a detailed
discussion about available network models in SST/macro, we
refer to the SST/macro user manual [35].
B. Configuration and Simulation Setup

We evaluate the performance of different micro-benchmarks
by considering SpectralFly, DragonFly, SlimFly and Bundle-
Fly topologies. We conducted our experiments with ~8.7k
network endpoints and with 32-port routers. To generate the
SpectralFly topology with ~8.7k network endpoints, we set
(p, q) = (23, 13) to generate a graph with 1092 routers, and a
concentration of 8 endpoints per router. For the DragonFly
topology configuration, the number of groups used is 69
(g), with 16 routers per group (a), each router connected
to 8 endpoints (p), and 8 global links (h) per router. This
conforms to the recommended balance to support full global
bandwidth for Dragonfly with radix-k switches (p = k/4, h =
k/4, a = k/2). The global links in the DragonFly topology
are arranged in a circulant manner [36], [37], since this
arrangement provides better bisection bandwidth than the
absolute arrangement. For the SlimFly topology, q is set to
27, with each router connected to 8 endpoints. Finally, for the
BundleFly topology, the graph is constructed with p = s = 9,
and each router has a concentration of 6 endpoints.

In the case of under-subscription (for example, when run-
ning microbenchmarks with 213 = 8192 ranks out of ~8.7k
available ranks), the physical nodes allocated to the job are
chosen randomly. Each MPI rank is then sequentially allocated
to nodes based on the standard ordering for the topology. For
the SpectralFly topology we use the essentially unstructured
ordering resulting from the Elzinga construction [28]. We
report our experimental results with various routing strategies.
Valiant routing demonstrates similar performance trend. The
router buffer size has been set to 64KB (Other buffer sizes
have also been tested but the results are not reported here
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Fig. 6: Performance comparison across topologies, traffic patterns, and offered load conditions under UGAL-L routing.
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Fig. 7: Performance across topologies, and offered load conditions
with random micro-benchmark, under minimal routing.

due to space constraint). For simulation, the number of virtual
channels has been set to the diameter of the graph plus one.

C. Experimental results

1) Micro-benchmarks to assess performance under conges-
tion: We consider standard traffic pattern micro-benchmarks to
evaluate the performance of different topologies under various
network capacities (offered load). These include random, bit
shuffle, transpose, and bit reverse traffic patterns. In each case,
a source node communicates with a destination node that is
determined by a specific permutation of the bit representation
of the source. Random traffic patterns can be found in many
irregular and graph applications. The shuffle traffic pattern
(obtained by rotating left 1 bit of the source) can be found in
Fast Fourier Transform (FFT) and sorting applications. Matrix
transpose is a basic linear-algebraic operation.

We consider a total of 8192 endpoints for these experiments.
For each traffic pattern ran on a topology, we collect the
maximum time taken across all the messages under a particular
offered load. The results are reported in Figure 6. Here, on
the x-axis we plot the offered load i.e. how much of the
network is saturated when running the micro-benchmarks. To
simulate network congestion, we inject messages with varying
delays by simulating a Poisson process. We report the speedup
relative to the execution with DragonFly Each topology was
run with the UGAL-L routing. As can be observed from the
figure, for all the micro-benchmarks SpectralFly performs the
best. The better performance of SpectralFly can be attributed
to the superior bisection bandwidth and available path diversity
of the SpectralFly topology. At or beyond 70% of the network
capacity, the network becomes saturated. Between BundleFly
and SlimFly, BundleFly exhibits better performance (except
with bit shuffle traffic). These experiments demonstrate that,
because of stronger discrepancy and spectral properties, Spec-
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Fig. 8: Evaluation of Valiant routing for the SpectralFly topology
with micro-benchmarks.

tralFly is robust to accommodate diverse traffic patterns under
varying degrees of network congestion.

2) Evaluation of different routing schemes: Besides eval-
uating different topologies with the UGAL routing, we also
consider minimal and Valiant routing for evaluation. Figure 7
presents the performance of the random benchmark with
minimal routing. With random micro-benchmark, SpectralFly
demonstrates better performance, compared to other topolo-
gies. Bit shuffle and transpose exhibit similar patterns. Next, in
order to evaluate the difference between minimal and Valiant
routing for SpectralFly, we ran the four micro-benchmarks
under varying network loads and report the results in Figure 8.
The execution time is normalized w.r.t. the execution time of
minimal (shortest-path) routing scheme on SpectralFly.

We see significant improvement for all offered loads with
the bit shuffle, bit reverse, and transpose traffic patterns, while
the random pattern has a significant decrease in performance
(except at 60% offered load). This suggests the increase in
path diversity by applying Valiant routing to a structured
communication pattern better exploits the discrepancy property
of the LPS graphs. Moreover, there is already significant path
diversity in minimal routing for the random micro-benchmark,
and so the addition of Valiant routing provides a minimal
increase in path diversity while doubling the expected length
of the routing paths. This suggests SpectralFly performs best
when traffic is unstructured, either due to the logical commu-
nication pattern or from the choice of routing algorithm.

D. Evaluation of Topologies under Real-World Traffic Patterns

1) Patterns Considered: For evaluating different topolo-
gies with real-world traffic patterns (under both minimal and
UGAL routings), we consider communication motifs from the
Ember Communication Pattern Library [38]:
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Fig. 9: Performance under Ember real-world traffic patterns with
minimal routing, reported as speedup w.r.t. the DragonFly topology.
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Fig. 10: Performance of different topologies with UGAL routing
w.r.t. DragonFly UGAL routing for real-world traffic patterns.

(i) Nearest neighbor communication pattern – Halo3D-26:
Nearest neighbor communication pattern, found in stencil
workloads, is captured by the Halo3D-26 motif, where each
MPI rank communicates with 6 of it’s nearest neighbors as
well as 20 of it’s diagonal neighbors, a total of 26 neighbors.
(ii) Wavefront communication pattern – Sweep3D: Wave-
front communication pattern is prevalent in particle transport
physics simulation, parallel iterative solvers and triangular
solvers [39] that generally stresses network latency and has
substantial dependency levels. One representative motif for the
wavefront communication pattern is the ASCI Sweep3D [39].
Here, a 3D data domain is decomposed over a 2D array of MPI
processes and repeated sweep along the diagonal is performed.
(iii) Subcommunicator all-to-all communication pattern–
FFT: In this communication pattern, found in Multi-
dimensional FFT, a 3D domain is decomposed along the X
and Y dimensions and subcommunicators are formed along the
1D line in both of the X and Y dimensions. One MPI process
is assigned to each of the 3D grid points and communicates
with all the subcommunicators along the X and Y dimensions.

2) Performance Results: The performance of each of the
Ember motifs on different topologies are reported in Figure 9
(with minimal routing) and fig. 10 (with UGAL routing). As
can be observed from Figure 9, for both the Halo3D-26 and
the Sweep3D traffic patterns, the SpectralFly configuration
outperforms the other topologies with a speedup of ~1.2×
and ~1.4× respectively, over the DragonFly topology (with
minimal routing). This indicates that, for SpectralFly, with
communication patterns with relatively low per-node commu-
nication, the robust discrepancy property and the reduction in
the average hop-count is sufficient to ameliorate any penalty
accruing as a result of longer maximum hop-count. In contrast
to this, we see that for the balanced FFT motif, DragonFly
slightly outperforms the other topologies. As the commu-
nication pattern for FFT involves all-to-all communication
along a 2D-plane within a 3D-arrangement of ranks, we
suspect that relative improvement is a result of the partial
alignment of these 2D all-to-all communication with the group
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Fig. 11: Ratio of maximum and average latency between Spec-
tralFly/SlimFly and SkyWalk as a function of the switch latency.

structure. Specifically, if multiple nodes from the same all-to-
all communication land in the same group, there is an out-
sized decrease in the communication pressure on the global
links. In particular, we note that the stronger group structure
of DragonFly (even as compared to BundleFly and SlimFly)
leads to the best performance on the balanced FFT motif. We
also note that, because of the lack of large all-to-all clusters in
Halo3D-26 and Sweep3D, there is as much marginal benefit to
alignment with the group structure. Finally, for the unbalanced
FFT traffic pattern, the SpectralFly configuration outperforms
all other topologies. While the other topologies with strong
group structure will again benefit from multiple elements
from the 2D all-to-all aligning with the group, the increased
sizes of the all-to-all groups will necessitate significantly
more between-group traffic on global links, degrading overall
performance. In contrast, SpectralFly handles the increased
all-to-all communication pressure better.

We also evaluate the Ember benchmarks on different topolo-
gies with UGAL routing. Figure 10 shows SpectralFly outper-
forms other topologies for halo3D-26 and Sweep3D motifs.
However, for both FFT motifs, DragonFly with UGAL routing
performs better. For the FFT motif, SpectralFly performs better
than SlimFly and BundleFly (achieving 90% of the execution
efficiency w.r.t DragonFly for the balanced FFT motif). This
suggests discrepancy properties of LPS graphs ensure perfor-
mance of SpectralFly either better-than or competitive-with
topologies which excel under the UGAL routing scheme.

VII. BEYOND STRUCTURE

As noted in Section IV, network parameters for each
topology (Table I), were chosen to facilitate a comparison of
interconnects based on their fundamental structural properties.
In Sections IV and VI, the structure of SpectralFly is superior
to, or comparable with, that of DragonFly, SlimFly, and
BundleFly across a variety of metrics. However, in practice,
the trade-off between topology cost and performance is an
important factor in the overall design. Since the competing
topologies have a similar number of routers and connections
per router, the total amount of wiring needed to build the
topologies will be a primary driver of any cost differences. In
addition to the direct costs of wire length there is an additional,
indirect cost as longer wires often necessitate higher energy
optical connections. As an added benefit, the analysis of wire
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Topology Routers Router Average Wire Max. Wire Electrical Optical Bisection Total Power/Bandwidth
Radix Length (m) Length (m) Links Links Bandwidth Power (W) (mW per Gb/s)

LPS(11, 7) 168 12 8.02 (10.29) 19.8 (21.21) 249 758 304 928 30.5
SF(9) 162 13 8.68 21.6 151 902 369 1028 27.9
LPS(19, 7) 336 20 10.43 (13.94) 28.6 (31.05) 432 2928 1080 3276 30.3
SF(13) 338 19 10.89 27.8 315 2896 1105 3155 28.6
LPS(23, 11) 660 24 14.35 (17.27) 39.8 (41.07) 531 7389 2928 7845 26.8
SF(17) 578 25 13.05 36.2 558 6667 2465 7138 29.0
LPS(29, 13) 1092 30 17.32 (21.09) 50.8 (52.10) 831 15549 6150 16292 26.5
SF(23) 1058 35 16.00 47.4 1257 17258 6095 18336 30.1

TABLE II: Wire length and energy efficiency statistics for the heuristic embedding of comparable SpectralFly and SlimFly topologies. For
mean and maximum wire length, we include in parenthesis the mean 20 instantiations of the SkyWalk topology in the same machine room.

lengths allows us to evaluate the end-to-end and typical latency
of SpectralFly as compared to physical latency minimizing
topologies, such as SkyWalk [40].

First, we compare the average and maximum wire length
necessary to implement a SpectralFly topology to the
similarly-sized SlimFly topology. SlimFly was chosen as point
of comparison because the bisection bandwidth (see Figure 4)
is most structurally comparable to the SpectralFly topology.
To ensure an equitable comparison, we assume each topology
is implemented equal concentration with rectilinear physical
wiring. Following the methodology in [40], we assume an
x × y grid of cabinets where intra-cabinent wires are all
2 meters while the inter-cabinet wires have length of 4 +
2 |xi − xj |+0.6 |yi − yj |, which includes a 2 meter overhead
at each end of the link. Assuming a roughly square room, we
fix y = d

√
2c/0.6e and x = dc/ye where c is the minimum

number of cabinets need for the topology if, similar to the
Summit supercomputer, each cabinet contains two routers.

This allows us to restrict our attention to the wiring between
the routers. Thus the question of minimal average wire length
is an instance of the Quadratic Assignment Problem (QAP),
which is NP-complete. To find a heuristically minimal layout,
we apply an expectation minimization approach combined
with a greedy refinement process which outperforms the
the standard Fast Approximate QAP algorithm on these in-
stances [41]. In order to take advantage of short lengths of
intra-cabinent links, for each topology we fix as a maximum
matching of the underlying topology and enforce that the
matching edges are within a cabinet. Table II provides a sum-
mary of the results of this layout approach. As we can see the
maximum and average wire lengths of SpectralFly and SlimFly
topologies are within ~10% of each other across all sizes,
with SpectralFly performing better on smaller topologies. To
provide additional context, we compare the layout with the
SkyWalk topology which was designed to minimize end-to-
end latency in the case of ultra-low latency routers/switches.
For each machine room, we report (in parenthesis) the average
behavior over 20 instantiations of the SkyWalk topology in the
same machine room. As we can see the SkyWalk topology
typically requires between ~20-30% longer lines overall with
a maximum wirelength~3% longer. This indicates that despite
the underlying expansion of the SpectralFly and SlimFly
necessitating longer wires, with care the overall wire lengths
can be made comparable to other modern topologies.

To translate the wire lengths to an estimate of the power
usage, we update the methodology of [42] to modern hardware

(i.e., the Mellanox SB7800 InfiniBand EDR 100Gb/s Switch)
and assume each port connected to an electrical link uses
~3.76 W while ports with optical links use 25% more power at
~4.72 W. Using METIS to approximate bisection bandwidth,
we quantify the trade-off between overall power expenditure
versus communication performance (see Table II). As is the
case with other metrics, the difference in energy cost per
unit of bandwidth is ~5-10%, with the notable exception of
the (29, 13)-SpectralFy being 15% more efficient than the
similarly sized SlimFly. This efficiency gain is a consequence
of SpectralFly’s better expansion properties yielding slightly
better bisection bandwidth while requiring ~15% fewer links.

The wire lengths allows the evaluation of end-to-end latency
and clock cycle times implicit in SpectralFly and SlimFly.
Following [40], we assume a cable delay of 5 ns/m uniform
switch latencies. Figure 11 provides a comparison of both
SlimFly and SpectralFly with the latency minimizing SkyWalk
topology. Except for LPS(19, 7), we have that both topologies
typically have lower end-to-end latency (and hence clock-
cycle time) than the SkyWalk topology, as well as singificantly
lower average latency. While the average and end-to-end
latency of SpectralFly is slightly larger (~5-10%) than SlimFly,
necssitating a longt clock-cycle time, the overall performance
benefits illustrated in Section VI are sufficient to make up
for this difference. Further, we believe that applying a more
sophisticated multi-objective minimization approach to the
layout problem will further close the gap in latencies between
these two topologies.

VIII. CONCLUSION

The design of interconnection networks is increasingly
informed by graph theoretic considerations. While researchers
have established a long list of desirable criteria, such as
low-diameter and average distance, high fault tolerance, and
high bisection bandwidth, developing topologies exhibiting all
these properties requires sophisticated methods. To this end,
we’ve proposed SpectralFly, a class of topologies with optimal
spectral gap based on the LPS graph algebraic construction.

Exploring first the design space of LPS graphs, we showed
this construction permits a large range of topology sizes
and radix values, including arbitrarily large topologies per
fixed radix. We then highlighted, both via experiments and
analytically, structural properties for which SpectralFly ex-
celled in comparison to competing topologies. In particular, for
bottleneck measures such as normalized bisection bandwidth,
SpectralFly outperformed other topologies, which have decay-
ing or tightly bounded bandwidth. The concession for these
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properties is slightly larger diameter; however, we showed
the average distance between nodes in an LPS topology is
typically smaller than DragonFly and BundleFly, and only
marginally larger than SlimFly. Furthermore, experiments sug-
gest these LPS graph properties remain relatively robust under
edge failures. Lastly, in order to experimentally validate the
potential of SpectralFly suggested by its structural properties,
we conducted simulations using the SST/macro simulator.
SpectralFly outperformed other network topologies under a
diverse range of communication patterns found in traditional
HPC workloads. Further, we demonstrated that the cost of
implementing a SpectralFly topology is on-par with, if not
better than, the SlimFly topology (which is the only considered
topology which has comparable bandwidth).
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