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Abstract—Hypergraphs offer flexible and robust data rep-
resentations for many applications, but methods that work
directly on hypergraphs are not readily available and tend to
be prohibitively expensive. Much of the current analysis of
hypergraphs relies on first performing a graph expansion – either
based on the nodes (clique expansion), or on the hyperedges
(line graph) – and then running standard graph analytics on the
resulting representative graph. However, this approach suffers
from massive space complexity and high computational cost with
increasing hypergraph size. Here, we present efficient, parallel
algorithms to accelerate and reduce the memory footprint of
higher-order graph expansions of hypergraphs. Our results focus
on the hyperedge-based s-line graph expansion, but the methods
we develop work for higher-order clique expansions as well. To
the best of our knowledge, ours is the first framework to enable
hypergraph spectral analysis of a large dataset on a single shared-
memory machine. Our methods enable the analysis of datasets
from many domains that previous graph-expansion-based models
are unable to provide. The proposed s-line graph computation
algorithms are orders of magnitude faster than state-of-the-art
sparse general matrix-matrix multiplication methods, and obtain
approximately 2 − 31× speedup over a prior state-of-the-art
heuristic-based algorithm for s-line graph computation.

Index Terms—Hypergraphs, parallel hypergraph algorithms,
line graphs, intersection graphs, clique expansion.

I. INTRODUCTION

Hypergraph models are more natural representation than

graphs for a broad range of systems—in biology, sociology,

telecommunications, and physical infrastructures—involving

multi-way relationships [3], [5], since graph models are limited

to representing pairwise relationships. Mathematically, a hy-
pergraph is a structure H = 〈V,E〉, with a set V = {vj}nj=1

of vertices, and an indexable family E = {ei}mi=1 of hyper-

edges ei ⊆ V . Hyperedges have different sizes |ei|, possibly

ranging from the singleton {v} ⊆ V (distinct from the element

v ∈ V ) to the vertex set V . A hyperedge e = {u, v} with

|e| = 2 is the same as a graph edge. Indeed, all graphs

G = 〈V,E〉 are hypergraphs: in particular, graphs are “2-

uniform” hypergraphs, so that now E ⊆ (
V
2

)
and all e ∈ E

are unordered pairs with |e| = 2. An example hypergraph H
is shown in Figure 1 on vertices V = {a, b, . . . , f} and edges

E = {1 : {a, b, c}, 2 : {b, c, d}, 3 : {a, b, c, d, e}, 4 : {e, f}}.
A well-known method to study hypergraphs is to cre-

ate a graph representation from the structure of the initial

hypergraph using a graph expansion method such as the

clique expansion [38]. The clique expansion replaces each

hyperedge with a graph edge for each pair of vertices in

the hyperedge. The information associated with hyperedges

in the original hypergraph is lost in the new graph [23].

Moreover, the size of the newly-constructed graph with these

expansion methods increases exponentially ([21], [14]), which

can significantly limit the scalability and applicability of these

techniques. For example, there are approx. 10.3 billion edges

in the clique-expansion graph of the Friendster dataset and

54.5 billion edges in that of Orkut [14]. With billions of non-

zero entries in the adjacency matrix of the clique-expansion

graphs, processing these datasets is not possible on a single

compute node.

Fig. 1: (left) An example hypergraph H. (right) Dual H∗ of the
example hypergraph H, defined later in Section II.

In this work, we propose a scalable framework to study non-

uniform hypergraphs with a lower-dimensional approximation

of the original hypergraph called s-line graphs of a hyper-

graph. Our multi-stage, versatile framework starts from the

original hypergraph, and consists of multiple stages, including

pre-processing, s-line graph construction, squeezing the s-

line graph, and s-measure (defined later) computation. An

s-line graph construction considers the number of common

(overlapping) vertices, denoted by s, between each pair of

hyperedges to capture the strength of connections among

hyperedges. Such a model can represent, for example, the

strength of the collaboration in a collaboration network.

Specifically, we are interested in this work with only high-

order s-line graphs, where s ≥ 2. Compared with the clique-

expansion graphs, the s-line graph of Friendster only has 53

edges and that of Orkut has 4,289 edges for s = 1024. In an

s-line graph, vertices (representing hyperedges of the original

hypergraph) are connected when hyperedges intersect in at

least s hypergraph vertices in the original hypergraph.

Dually, s-line graphs can also be constructed by consider-

ing the (hyper)vertices in the original hypergraph and their

overlapping hyperedge sets. In this case, vertex s-line graph

when s = 1 is the clique-expansion graph of a hypergraph.

784

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00081



Fig. 2: Hyperedge s-line
graphs Ls(H) = 〈Es, F 〉
for s = 1, 2, 3, 4 for the
example in Figure 1. The
width of the graph edges
represents the strength of
the connection in the orig-
inal hypergraph.

Figure 2 shows the hyperedge s-

line graphs Ls(H) for our exam-

ple for s = 1, 2, 3, 4. Note the

changing vertex sets Es for each

s value, decreasing to E4={3}
being the single hyperedge with

|e|=5 ≥ 4. Throughout this paper,

we refer s-line graphs as hyper-

edge s-line graphs.

The drastic difference in size

between the clique-expansion

graphs and the s-line graphs has

implications in the adjacency

matrix representations of the

graphs. The size reduction entails

drastic memory footprint reduction while computing a

particular metric on the hypergraph (for example, when

computing the Laplacian). Note that, in the s-line graph view

of a hypergraph, as we vary the value of s, we can still retain

the important connectivities in the original hypergraph.

A naive approach for the s-line graph construction is to find

the intersection of the neighbor list of each pair of hyperedges

in the original hypergraph. This is both compute- and memory-

intensive. A recent parallel heuristic-based algorithm [30] sig-

nificantly improves the performance over the naive approach

by avoiding redundant set intersections. However, the approach

is based on heuristics and can only compute one s-line graph

at a time with one s value. Table I compares the performance

of the algorithm presented in [30] with the method proposed

in this work in terms of runtimes on LiveJournal dataset.

As observed from the table, the s-line computation stage is

the most time-consuming step in the pipeline. Hence, we

propose two new (exact) parallel algorithms for s-line graph

construction to reduce the overall execution time and improve

the efficiency of the process. We apply our framework to

different datasets and real-world problems to gain insights into

its performance and utility.

We identify three additional motivations for computing s-

line graphs of a hypergraph. First, once computed, highly-
tuned graph libraries can be applied to the s-line graphs

to measure different graph-theoretic metrics. The second mo-

tivation stems from applications, where hypergraphs and s-

line graphs enable new insights based on s-line graph metrics.

Third, s-line graphs enable spectral graph analysis of hy-

pergraphs. To the best of our knowledge, there are no known

method for directly computing the eigenvectors and eigenval-

ues of the rectangular incidence matrix of a hypergraph. The

lack of a simple, eigenvalue-preserving algebraic relationship

between the incidence matrix H of a hypergraph, and the

adjacency matrices of s-line graphs suggests the existence of

a method for implicitly determining the s-line graph spectrum

without forming the s-line graph itself is highly unlikely.

Eigenvalues can provide insight into, for example, how well

each of the connected components in an s-line graph remains

connected and consequently provide insight about the original

hypergraph connectivity.

Stage Algorithm in [30] our method
preprocessing 0.122s 0.152s
s-overlap 313.864s 12.085s
squeeze 3.845s 2.656s
s-connected components 22ms 11ms
total time 329.520s 28.216s
speedup 1× 26×
#set intersections 8.66× 109 0

TABLE I: Computational cost of each step of the high-order line
graph framework with the LiveJournal dataset [37]. Clearly, s-
overlap computation (in bold) is the dominant stage in the process.
Note that our method does not perform any set intersection operation.

Fig. 3: (Left) Bipartite graph representation ofH. (Middle) Incidence
matrix (H). (Right) 2-section H2.

Summary of contributions. In this paper, we:
• Propose two new hashmap-based s-line graph compu-

tation algorithms that completely avoid set intersection

operations and prove to be significantly faster than the

state-of-the-art efficient algorithm (§III).

• Propose a (C++ based) high performance, scalable frame-

work1 for computing higher order line graph of hyper-

graphs (§IV).

• Apply our framework on three real-world problems:

uncovering collaborations in co-authorship networks and

in co-staring networks, and identifying important genes

in transcriptomics data. We demonstrate both higher

efficiency and practical usability (§V).

• Empirically analyze scalability of our framework on a

variety of real-world datasets and show superior perfor-

mance over the algorithm proposed in [30] (§VI). We

also compare our approach with a state-of-the-art sparse

matrix-matrix multiplication (SpGEMM) library-based

implementation (§VI-G) and show superior performance.

II. BACKGROUND

A. Hypergraph Representations
Hypergraphs may be represented in a number of equivalent

forms. Given a hypergraph H, one can construct the bipartite
graph B(H) = 〈V � E,E′〉 whose vertex set is the disjoint

union of the hypergraph’s vertices V and hyperedges E, and

whose edge set is the undirected graph edges E′ ⊆ V � (
E
2

)
,

where {v, e} ∈ E′ iff v ∈ e. Further, one can construct the

Boolean incidence matrix Hn×m where for i ∈ [n], j ∈ [m],
bij = 1 if vi ∈ ej , otherwise bij = 0. Note that H is not

square. These two representations are illustrated in Figure 3

for the example hypergraph introduced in Figure 1.

The dual hypergraph H∗ = 〈E∗, V ∗〉 of H has vertex

set E∗ = {e∗i }mi=1 and family of hyperedges V ∗ = {v∗j }nj=1,

where v∗j : = {e∗i : vj ∈ ei}. The dual H∗ for our example

is shown in Figure 1. H∗ is just the hypergraph with the

transposed incidence matrix HT , and (H∗)∗ = H.

In graphs, the structural relationship between two distinct

1Forthcoming code for our framework NWHypergraph will, pending insti-
tutional approval, be posted at https://github.com/pnnl/NWHypergraph
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vertices u and v can only be whether they are adjacent in a

single edge ({u, v} ∈ E) or not ({u, v} �∈ E); and dually,

that between two distinct edges e and f can only be whether

they are incident at a single vertex (e ∩ f = {v} �= ∅) or not

(e∩ f = ∅). In hypergraphs, both of these concepts are appli-

cable to sets of vertices and edges, and additionally become

quantitative. Define adj : 2V → Z≥0 and inc : 2E → Z≥0, in

both set notation and (polymorphically) pairwise:

adj(U) = |{e ⊇ U}|, adj(u, v) = |{e ⊇ {u, v}}|
inc(F ) = | ∩e∈F e|, inc(e, f) = |e ∩ f |

for U ⊆ V, u, v ∈ V, F ⊆ E, e, f ∈ E. These concepts are

dual, in that adj on vertices in H maps to inc on edges in

H∗, and vice versa. And for singletons, adj({v}) = deg(v) =
|e  v| is the degree of the vertex v, while inc({e}) = |e| is

the size of the edge e. In our example, we have adj(b, c) = 3,

while inc({1, 2, 3}) = 2.

B. Hypergraph Measures and s-Line Graphs
Two edges e, f ∈ E are s-incident if inc(e, f) = |e∩f | ≥ s

for s ≥ 1. An s-walk is a sequence of edges 〈e0, e1, . . . , en〉
such that each ei−1, ei are s-incident for 1 ≤ i ≤ n. An s-path
is an s-walk where no edges are repeated.

Aksoy et al. have developed various s-line graph metrics on

the basis of s-walks [2]. Here, we describe two of the metrics

used in our paper. Let Es : = {e ∈ E : |e| ≥ s}. The s-
betweenness centrality of a hyperedge e is

∑
f �=g∈Es

σs
fg(e)

σs
fg

,

where σs
fg(e) is the total number of shortest s-walks from

hyperedge f to g and σs
fg is the number of those shortest s-

walks that contain hyperedge e. A subset of hyperedges F ⊆
Es is an s-connected component if there is an s-walk between

all edges e, f ∈ F , and F is a maximal such subset. These

measures have important applications in hypernetwork science.

For example, Feng et al. apply s-betweenness centrality to

analyze biological datasets [10].

Consider the 2-section H2 = 〈V, F 〉 of a hypergraph H as a

graph on the same vertex set V , but now with edges F ⊆ (
V
2

)

such that {u, v} ∈ F iff there is some hyperedge e ∈ E with

{u, v} ⊆ e (see Figure 3). Thus H2 can be thought of as a

kind of “underlying graph” of a hypergraph H.

Also of key interest is the 2-section of the dual hypergraph

H∗, called the line graph L(H) = (H∗)2. Note that the

vertices in L(H) are the hyperedges in E, and two such (now)

vertices e, f ∈ E are connected with a line graph edge iff

inc(e, f) > 0. In general, for integer s ≥ 1, define the s-line
graph of a hypergraph H as a graph Ls(H) = 〈Es, F 〉 where

F ⊆ (
E
2

)
and {e, f} ∈ F iff e and f are s-incident. It is known

that in general, a hypergraphH cannot always be reconstructed

from even all of the s-line graphs Ls(H) together with the s-

line graphs Ls(H∗) of the dual [23]. Nonetheless, Aksoy et
al. have demonstrated that all of the above measures can be

calculated from the s-line graphs Ls(H). 1-line graphs are

also known as intersection graphs or one-mode projections.

s-line graphs can be naively calculated from the incidence

matrix H, specifically, L : = H�H is an m × m sym-

metric integer weighted adjacency matrix, where each cell

L[i, j], i, j ∈ [m], records inc(ei, ej), and the diagonal entries

Algorithm 1 Algorithm proposed in [30] to compute the edge list
of an s-line graph for a given s.
Input: Hypergraph H = (V,E), s
Output: s-line graph edge list Ls(H)

1: Ls(H)← ∅
2: Lt(H)← ∅, for each thread t
3: for all hyperedge ei ∈ E do in parallel
4: for each vertex vk of ei do
5: for each hyperedge ej of vk where (i < j) do
6: count← set intersection(neighbor list(ei),

neighbor list(ej))
7: if count ≥ s then
8: Lt(H)← Lt(H) ∪ {ei, ej}
9: Ls(H)← Ls(H)∪ every Lt(H)

10: return Ls(H)
L[i, i] record edge size inc({ei}) = |ei|. For integer s ≥ 1,

define a Boolean filtration matrix Ls where Ls[i, j] = 1 if

L[i, j] ≥ s, and 0 otherwise. Then Ls − I is the adjacency

matrix of Ls+1.
III. ALGORITHMS FOR CONSTRUCTING s-LINE GRAPHS

In this section, we start by briefly discussing a previous

state-of-the-art algorithm for the s-line graph computation [30]

and derive the linear-algebraic equivalent formulation of the

algorithm. We next transition to the linear algebraic formu-

lation of our new algorithm and present our parallel s-line

graph and ensemble s-line graph computation algorithms.

Additionally, we discuss the design and implementation details

of our parallel algorithms. We conclude the section with

discussion about the distinctions between our algorithm and

SpGEMM-based approach, the relationship of s-line graph

with the weighted clique-expansion graph and the practicality

of the s-line graph. Crucially, our methods also enable scalable

analysis of higher-order clique expansions, but for the purpose

of this work we mostly frame our language around, and present

results for, s-line graph computations.

A. Previous Approaches
Recently, Liu et al. proposed an algorithm [30] (shown

in Algorithm 1), where only the pair of hyperedges with

at least one common neighbor is considered for the s-line

graph computation. Additional heuristics have been applied to

reduce the amount of redundant work. These heuristics include

degree-based pruning, skipping already visited hyperedges,

short-circuiting set intersection and considering either the

upper or the lower triangular part of the adjacency matrix of

the s-line graphs. The proposed algorithm, in conjunction with

these heuristics, achieves notable performance benefit over the

naive approach. While Algorithm 1 improved the execution

time of the s-line graph computation, performing explicit all-

pairs set intersections despite incorporating different heuristics

may still be computationally inefficient.

B. Linear Algebraic Formulation of Our Algorithms
Our approach exploits the linear algebraic relationships

present in the adjacency matrix L = H�H. There are two

basic variants to consider to construct L, which differ based
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on loop ordering. In the first case, we consider the “ijk” loop

ordering, where the inner loop is essentially a dot product

between column i and column j of H, that is, an intersection

between the non-zero locations of those two rows:

1: for i = 0, 1, . . . do
2: for j = 0, 1, . . . do
3: for k = 0, 1, . . . do
4: L[i, j]← L[i, j] +H[k, i]H[k, j]

5: Ls ← Boolean filtration on L based on s

An alternative ordering of the loops in matrix multiply

interchanges the two inner loops.

1: for i = 0, 1, . . . do
2: for k = 0, 1, . . . do
3: for j = 0, 1, . . . do
4: L[i, j]← L[i, j] +H[k, i]H[k, j]

5: Ls ← Boolean filtration on L based on s

In this case, the intersection is not so obvious. The inner

loop copies row k of H, scaled by element H[k, i], to row

i of L. The “intersection” now is implicit in whether H[k, i]
is zero or non-zero. (In numerical linear algebra terminology,

the inner loop is an “axpy,” or vector addition, operation.)

If we were to carry out this operation with actual matrices,

the two forms would be computationally equivalent. However,

we are carrying out this computation with graph structures,

which are best represented as sparse matrices. A computation

using the graph structure, corresponding to the “ijk” ordering

is given as

1: for i = 0, 1, . . . do
2: for j = 0, 1, . . . do
3: L[i, j]← L[i, j] + |H.Adj[i] ∩H.Adj[j]|
4: Ls ← Boolean filtration on L based on s

H.Adj[i] indicates all vertices k adjacent to vertex i in H, so

that adj(vi, vk) > 0. Note that this form compares all pairs of

vertices, which may be highly redundant if H is sparse.

The alternative “ikj” formulation instead allows us to exploit

the structure of the graph.

1: for i = 0, 1, . . . do
2: for k ∈ H�.Adj[i] do
3: for j ∈ H.Adj[k] do
4: L[i, j]← L[i, j] + 1

5: Ls ← Boolean filtration on L based on s

Here, rather than computing intersections between all pairs, we

accumulate intersecting edges as we traverse the hypergraph.

C. Our Hashmap-based Algorithm to Compute a s-line Graph
Based on the above observation, in contrast to performing

an explicit set intersection between the full neighbor lists of

both ei and ej (Line 6 in Algorithm 1), our new algorithm

(Algorithm 2) only counts the common neighbor vk (Line 9

in Algorithm 2). The new algorithm maintains a running count

of the amount of overlaps between ei and ej observed so far.

This is reminiscent of counting “confirmed” common members

(vk) between ei and ej , instead of “searching” for common

memberships between two neighbor lists of ei and ej .

Algorithm 2 Our algorithm to compute the edge list of an s-line
graph for a given s using a hashmap data structure.
Input: Hypergraph H = (V,E), s
Output: s-line graph edge list Ls(H)

1: Ls(H)← ∅
2: Lt(H)← ∅, for each thread t
3: for all hyperedge ei ∈ E do in parallel
4: if degree[ei] < s then � Degree-based pruning

5: continue
6: overlap count ← []
7: for each vertex vk of ei do
8: for each hyperedge ej of vk where (i < j) do
9: overlap count[ej]++

10: for each [ej , n] ∈ overlap count do
11: if n ≥ s then
12: Lt(H)← Lt(H) ∪ {ei, ej}
13: Ls(H)← Ls(H)∪ every Lt(H)
14: return Ls(H)

Algorithm 3 Our algorithm to compute the edge lists of an
ensemble of s-line graphs using hashmap data structures.
Input: Hypergraph H = (V,E), array s
Output: s-line graph edge lists Lsi(H), ∀si ∈ array s

1: overlap count ← {}
2: s← smallest s ∈ array s
3: for all hyperedge ei ∈ E do in parallel
4: if degree[ei] < s then
5: continue
6: overlap count[ei] ← []
7: for each vertex vk of ei do
8: for each hyperedge ej of vk where (i < j) do
9: overlap count[ei][ej]++

10: for all si ∈ array s do in parallel
11: Lsi(H)← ∅
12: for each hyperedge ei ∈ E do
13: for each [ej , n] ∈overlap count[ei] do
14: if n ≥ si then
15: Lsi(H)← Lsi(H) ∪ {ei, ej}
16: return Lsi(H), ∀si ∈ array s

To keep track of the running count, the algorithm allocates

a hashmap data structure for each hyperedge ei (Line 6 in

Algorithm 2) on the fly, with 2-hop neighbors ej as keys

and the current overlap count of (ei, ej) as the values. The

algorithm still considers only the set of edge pairs (ei, ej) with

at least one common neighbor (vk) (Lines 3–8 in Algorithm 2)

and these wedges are considered only from one direction

(i < j). We also apply degree-based pruning heuristic to

filter out the set of hyperedges with degree < s from the

computation, as they are not members of Es.

D. Computing Ensemble of s-line Graphs
Occasionally, we need to compute an ensemble of s-line

graphs, instead of a single one, for different values of s. In

this scenario, running algorithm 2 multiple times to generate

s-line graphs separately may be inefficient. Hence, to compute

an ensemble of s-line graphs, we modify algorithm 2 to first
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accumulate and store the overlap counts, and then filter out

edge-pairs based on a particular s value. The modified algo-

rithm is shown in Algorithm 3. Since multiple s-line graphs

will be constructed, instead of the in-place insertion of edges

(ei, ej) with s overlapping neighbors in the s-line graph’s edge

list (Line 12 in algorithm 2), we decouple this insertion step

from the counting step. The algorithm maintains a running

count of overlaps for each pair of hyperedges (ei, ej) (Line 9

in algorithm 3). Once the counting step is completed, for each

value of s, the algorithm loops through the hashmap containing

all (ej , counts) pairs for each ei and construct the edge list of

the s-line graph (Lines 10–15 in Algorithm 3). Degree-based

pruning can be applied to filter out the hyperedges with degree

smaller than the smallest s in array s. To avoid duplicate

counting for a pair of edges (ei, ej), we prune redundant

computation related to edge (ej , ei).

E. Parallel Time Complexity Analysis
We analyze the complexity of Algorithm 2 and Algorithm 3

in the work-depth model [18]. The work W is equal to the

total number of independent computations. The depth D is

equal to the time required for the critical path computation (in

the computation DAG, the longest chain of dependency). If

P processors are available, with a randomized work-stealing

scheduler, Brent’s scheduling principle dictates that the run-

ning time is O(W/P +D). Each hyperedge is visited once on

the outermost loop (|E|). Without considering any heuristics,

the second inner loop visits dv number of incident hypernodes

on average. The innermost loop visits de incident hyperedges

on average. Because lookup and insertion of elements in a

hashmap is constant on average, therefore, Algorithm 2 takes

O(|E|dvde) on average, and O(|V ||E|2) time in the worst

case. The overall work is O(|V ||E|2), and overall depth is

O(log|H|). Here |H| denotes the number of non-zero entries

in the hypergraph incidence matrix. Algorithm 3 has the same

time complexity as Algorithm 2. Next we consider degree-

based pruning and considering only the upper triangular part

of the adjacency matrix Ls(ei, ej pairs with i < j). The

degree-based pruning trims the work in outermost loop to Es.

Considering only the upper triangle of the adjacency matrix

Ls essentially cuts the overall work by half.

F. Parallel Implementation Design Considerations
We implement our framework in C++20. Since s-line

graph computation is the most compute-intensive stage in

the pipeline, we parallelize our algorithms to compute the

s-line graphs in Stage 3. For this purpose, we leverage the

parallel constructs available in Intel oneAPI Threading Build-

ing Blocks (oneTBB) [17]. In particular, the outermost for

loops iterating over the hyperedges in Algorithm 2 and Algo-

rithm 3 are parallelized with the parallel_for construct in

oneTBB. parallel_for, in the form of (range, body,
partitioner), allows different ranges to be passed in to

enable partitioning the range (hyperedges) in different ways

so that different workload distribution strategies among the

threads can be tested, as long as the provided range meets the

C++ range requirements.
Ranges and Partitioning strategies. oneTBB provides

a built-in range, namely blocked range, where the hyper-

edges (IDs) can be divided into blocks (chunks) and each

chunk of contiguous hyperedges (IDs) can be assigned to

one thread. Additionally, we adopt an alternative, customized

range, namely cyclic range. Here, given the stride size equal

to the number of total threads nt, thread 0 processes hyper-

edges e0, e0+nt, e0+2∗nt, e0+3∗nt and so on, thread 1 processes

hyperedges e1, e1+nt, e1+2∗nt, e1+3∗nt and so on. Here ei
denotes a hyperedge ID. oneTBB is based on work-stealing

runtime scheduler. Work stealing scheduler is particularly

beneficial in our context, since this enables idle threads to

steal work from other straggler threads, which are currently

processing, for example, high-degree hyperedges.
Granularity Control. To accommodate flexibility for load

balancing, oneTBB also provides provision for specifying the

granularity of work done by each thread, while reducing the

overheads of work stealing and task scheduling. We leverage

this fine-grained control to specify the block size of the chunk

of work (i.e. the number of hyperedges assigned to each

thread). We notice that chunk size up to 256 achieves similar

performance. With larger chunk sizes, the scheduling overhead

noticeably impacts algorithm performance.
Data Structures for the Main Performance Cri-

terion (Overlap Count). The hashmap data structures

for maintaining the overlap counts in our algorithms are

thread-local data structures, implemented with the C++

std::unordered_map. In Algorithm 3, for example, each

hyperedge is associated with a hashmap that maintains a list of

neighbors with at least one overlapping vertex. Before apply-

ing filtering (s), the size of each of these individual hashmap

is equal to the degree of each hyperedge. With hypergraphs

with skewed-degree distribution, s-line computation may have

hashmaps for which the sizes vary significantly.
Consideration of dynamic vs pre-allocated thread-local

storage: We have observed that pre-allocated thread-local

storage (TLS) (i.e. per-thread hashmap allocated outside of the

outermost for loop and resetting it after each iteration) may be

beneficial for computing s-line graphs with hypergraphs with

denser overlapping neighbor sets for each pair of hyperedges.

Web dataset, discussed in Section VI, is one such example.

For a particular s value, Web generates denser s-line graph.

Dynamically allocating and deallocating a hashmap in each

iteration on-the-fly inside the outermost for loop is costlier

in this case. All other datasets, however, prefer dynamically-

allocated hashmap for each thread in each iteration.

G. Relationship among Our Hashmap-based s-line Graph
Algorithm, Algorithm 1 and Sparse Matrix-Matrix Mul-
tiplication (SpGEMM).

When constructing a single s-line graph for a particular s
value, considering the pairs of hyperedges sharing at least one

common node is equivalent to computing the sparse general

matrix-matrix multiplications (SpGEMM) [13] followed by a

filter operation to find the edgelist of an s-line graph. However,

the SpGEMM-based approach is both time-consuming and

memory-intensive. There are three reasons why it is not

efficient for computing s-line graphs. First, it considers both
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the upper triangular and the lower triangular of hyperedge

adjacency matrix Ls even though the matrix is symmetric. In

contrast, our algorithm can exploit this symmetry to consider

either the upper or the lower triangular part of the matrix.

Second, since SpGEMM is more general, it has to compute

and store the product matrix before applying filtration upon

the matrix. This requires extra space to store the intermediate

results (i.e., the product matrix). Our algorithm, on the other

hand, can apply the filtration operation on-the-fly and does not

require to materialize the product matrix due to the known s
value. Third, the SpGEMM-based approach cannot apply other

heuristics to speedup the computation, such as degree-based

pruning (prune all the hyperedges with degree < s) or short

circuit the set intersection as applied in Algorithm 1. We report

the performance comparison of our algorithms with a state-of-

the-art parallel SpGEMM library in Section VI-G.

H. Relation to the (Weighted) Clique-expansion Graph
Given a hypergraph H with incidence matrix H, we can

compute the weighted clique-expansion adjacency matrix as

W = HHT −DV where DV is a diagonal matrix with node

degrees as its diagonal entries. It is easy to see that W[i, j] is

the number of hyperedges nodes i and j appear together in.

Note that we can use W to obtain Ls(H
∗) for every integer

s ≥ 1 through its adjacency matrix L∗s. We set L∗s[i, j] = 1 if

W[i, j] ≥ s and 0 otherwise. However, the above procedure

would be very memory-intensive as W can be very dense.

This observation implies that we could use our approach to

efficiently compute s-sections, or “s-clique” graphs, where a

graph edge connects two nodes if the nodes appear together

in a hyperedge at least s times, bypassing memory limitation

issues by not having to explicitly compute W. In particular,

this could be accomplished by running our algorithm to

directly compute Ls(H
∗) for a given s. So in other words, the

s-line graph problem is dual to the s-clique problem. Although

we frame our paper through the s-line graph perspective, it is

crucial to note that the tools we develop apply equally well to

the s-clique graph problem. The choice of which perspective

to take depends on whether one wants to investigate edge- (s-

line graph) or node- (s-clique graph) centric properties, and

on the particular application.

I. Motivation for using higher-order graph expansions
A widespread approach to hypergraph analysis is to focus

instead on associated graph projections, such as the clique

expansion. As discussed in Section III-H, our framework

actually includes the clique expansion as a special case: the

s-line graph of the dual hypergraph (i.e. s-clique graph) is

the graph obtained by linking vertices in the hypergraph

whenever they belong to s or more shared hyperedges. In

this way, the 1-line graph of the dual hypergraph is the

clique expansion. Compared to the clique expansion approach,

there are significant, practical benefits afforded by the s-clique

approach, for s > 1.

In particular, s-clique graphs can reduce the density of graph

projections while preserving – or even amplifying – essential

features of the network. Line graphs (or clique expansions)

Disease
Rank & Score Percentile

s = 1 s = 10 s = 100
Malignant neoplasm of breast 1 (100%) 1 (100%) 1 (100%)
Breast carcinoma 2 (99.99%) 2 (99.99%) 2 (99.99)
Malignant neoplasm of prostate 3 (99.97%) 4 (99.96%) 4 (99.96%)
Liver carcinoma 4 (99.96%) 3 (99.97%) 3 (99.98%)
Colorectal cancer 5 (99.95%) 5 (99.95%) 6 (99.94%)

TABLE II: Ordinal rank and score percentile of the top 5 diseases
by PageRank score in the clique expansion (i.e. s = 1), as well as
the s-line graphs of the dual hypergraph (s-clique expansion), for
s = 10, 100.

of hypergraph-structured data tend to be prohibitively dense

because a single high degree vertex (resp., large hyperedge)

yields quadratically many edges. For instance, in an author-

paper hypergraph, a single paper with many authors (i.e. large

hyperedge) links all pairs of those authors, whereas for s > 1,

the s-clique graph approach requires more than one joint paper

to link those authors in the collaboration graph.

In practice, we find the density of s-clique graphs drops

off exponentially in s in data sets from far-ranging domains.

Fig. 4: The number of edges in the s-
clique graph of four datasets

In log-log scale,

Figure 4 plots

the number of

edges in s-clique

graphs against s
for disGeNet (a

disease-gene dataset

[36]), condMat

(an author-paper

network from the

condensed matter

section of the arXiv [35]), compBoard (a board member-

company network from [2]), and lesMis (a character-scene

network derived in [24] from Victor Hugo’s Les Miserables).

While the rates of decrease differ across datasets, s-clique

graphs rapidly sparsify as s increases. For larger datasets,

the formation of the clique expansion is intractable; s-clique

graphs provide an alternative in these cases.

Even when s-clique graph formation is feasible for s = 1,

focusing on s > 1 may be sufficient or preferable for a

number of basic analytic tasks. While this of course is data and

question dependent, we illustrate the potential effectiveness of

this approach for one common analytical task: centrality and

ranking. In biology, hypergraphs have been utilized to identify

structurally critical genes and diseases in interactome networks

[12]. Returning to the disease-gene network, we construct the

clique expansion (linking diseases associated with common

genes), compute the PageRank score of the diseases, and com-

pare this to the PageRank rankings of diseases in the s-clique

graphs, for s = 10 and s = 100. Table II presents how the top

5 ranked diseases in the clique expansion (s = 1) are ranked

in the s = 10 and s = 100 higher-order clique expansions.

These three graphs are of vastly different densities, having

2.7M, 246K, 12K edges, respectively. Nonetheless, the ordinal

rankings and score percentiles for the top 5 rated diseases are

nearly identical across all three graphs. Extending to the top

400 diseases – which constitute those above 95% percentile of

scores – shows that 92% and 88% of these diseases remain in
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the top 400 for s = 10 and s = 100, respectively. In this case,

the higher-order s-clique graph approach identifies essentially

the same critical diseases according to their PageRank using a

network with 231 times fewer edges than the clique expansion.

IV. OUR s-LINE GRAPH COMPUTATION FRAMEWORK

We now discuss our s-line graph framework for non-

uniform hypergraphs in detail. The framework has five major

stages, two of which are at least partially optional, depending

on the needs of a particular data set and problem.

Stage-1 Pre-processing. Pre-processing hypergraph in-

cludes removing isolated vertices, empty edges, and relabeling.

Relabeling. Large hypergraphs with highly-skewed, non-

uniform degree distributions generally benefit from relabeling

the hyperedge IDs according to their degrees (henceforth

referred to as relabel-by-degree). Let’s consider a “wedge”

motif (ei, vk, ej) in the bipartite graph hypergraph form

B(H). When counting the common neighbor vk, to avoid

considering vk twice: once in view of (ei, vk, ej) and another

as (ej , vk, ei), all s-line computation algorithms include a

comparison (i < j), so that the “wedge” is traversed only once

(Line 5 in Algorithm 1, Line 8 in Algorithm 2 and Line 8 in

Algorithm 3). This is equivalent to considering only the upper

triangular part of the adjacency matrix Ls.

Relabel-by-degree in ascending order, in conjunction with

considering the upper triangular part of Ls, may improve

the performance of the algorithm. Additionally, this helps

achieve better load balancing among threads while executing

a parallel s-line graph computation algorithm in the later

stage. Equivalently, relabel-by-degree in descending order, in

conjunction with considering the lower triangular part of Ls,

may provide similar performance improvement.

Stage-2 (optional) Computing toplexes. We calculate the

toplexes Ě, and thereby the simplified hypergraph Ȟ. A toplex
is a maximal hyperedge e such that there exits no hyperedge

f where � ∃f ⊇ e. Let Ě ⊆ E be the set of all toplexes. For a

hypergraph H, Ȟ =
〈
V, Ě

〉
is the simplification of H, and H

is simple when H = Ȟ, so that all hyperedges are toplexes.

A simplification may result in significantly smaller Ȟ, which,

in turn, reduce the memory footprint of subsequent stages.

Efficient algorithms for computing toplexes [31] are available.
Stage-3 Computation of the edge list of the s-line

graph of a given hypergraph. The most important and

compute-intensive stage of the s-line graph framework in-

volves construction of the s-line graph itself. Depending on

the requirement, the objective of this stage can be two-fold:

the computation of only one s-line graph for a particular s
value or an ensemble of s-line graphs for different values

of s. Computation of an ensemble of s-line graphs is more

memory-intensive in comparison to just computing a single s-

line graph. We discuss in detail two algorithms for computing

individual and ensemble of line graphs in the next section.
Stage-4 ID squeezing (optional) and s-line graph con-

struction. After we finish computing the edge list of the s-

line graphs, many hyperedge pairs may not be included in

the newly-constructed s-line graph due to insufficient overlap

between their vertex sets. Hence, the adjacency matrix of the

s-line graph may be hypersparse (many rows will be empty

when considering s-overlap). Retaining the original IDs of

the hyperedges to construct the new s-line graph will thus

be wasteful in terms of memory. Hence, optionally, we may

remap the IDs to a contiguous space to eliminate the “holes”

in the ID space of the s-line graph. This stage is called

ID squeezing. The s-line graph is constructed based on the

generated edge list.

Stage-5 s-metric computation. Once the s-line graph

is constructed, different s-line graph metrics are computed,

including s-connected components, s-centrality, s-distance,

etc. When computing these metrics, any standard, relevant

graph algorithm can be applied to compute such metrics.

(a) s = 1 (b) s = 3 (c) s = 5

Fig. 5: Line graphs computed from the virology genomics data
[10]. They are plotted using NetworkX in Shell layout. The six most
important genes in the original hypergraph are identified by the 5-line
graph, which are ISG15, IL6, AFT3, RSAD2, USP18 and IFIT1.

V. REAL-WORLD APPLICATIONS

In this section, we illustrate the utility of our frame-

work using three real-world applications: identifying the most

important genes in a transcriptomics data, revealing strong

co-authorships among authors, and uncovering collaboration

networks among actors on Internet Movie Database (IMDB).

A. Identifying Genes Critical to Pathogenic Viral Response
Though graph models are quite successful in biological

data modeling, they have limitations in representing complex

relationships amongst entities. In biology, hypergraphs can be

used to model gene and protein interaction networks. Here

we construct a hypergraph from the virology genomics data

[10], where there are 9760 hyperedges representing genes,

and 201 vertices representing individual biological samples

with specific experimental “conditions” (e.g., mouse lung cells

treated with a strain of Influenza virus and sampled at 8 hours).

We omit the details of extracting the hypergraphs from the

dataset due to space constraint.

To identify important genes in this hypergraph, we compute

the s-connected components and the s-betweenness centrality

scores of the vertices within each s-connected component.

Figure 5 shows these s-line graphs. As s increases, the

important genes are clearly identifiable in the visualization.

In particular, gene IFIT1 and USP18 have the highest cen-

trality scores, implying that they are the two most important

genes. They share more than 100 vertices between them. This

indicates that IFIT1 and USP18 are both perturbed in over 100

experimental conditions at the same time. Our s-line graphs

clearly reveal the strength of the connections of those two

genes that previous graph-based models are unable to deduce.
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B. Revealing Relationships Among Authors
For certain hypergraph analytics, the formation of an ensem-

ble of s-line graphs is strictly necessary. To illustrate a particu-

lar type of analysis that necessitates s-line graph construction,

we construct a hypergraph from the condensed matter author-

paper network in Los Alamos e-Print Archive [35]. This

hypergraph contains 16,726 authors as vertices, 22,016 papers

as hyperedges, and 58,595 author-paper inclusions.

To reveal the relationships among authors in this network,

we compute an ensemble of s-line graphs where s ranges

from 1 to 16 (16 is the max s that produces non-singleton

components). We compute the normalized algebraic connec-

tivity of the s-line graphs of author-paper dataset. Normalized

algebraic connectivity is the second-smallest eigenvalue of

the normalized Laplacian matrix[11], [7]; larger values imply

stronger connectivity properties of the s-line graph and hence

the hypergraph.

Fig. 6: Normalized algebraic con-
nectivity for condensed matter author-
paper network.

As observed from

Figure 6, decreasing

values of algebraic con-

nectivity from s=3 to

s=12 reveals that many

authors collaborate on

papers only sparsely,

meaning the vertices

(authors) within a con-

nected component are

sparsely connected with each other. However, the sharp in-

crease in algebraic connectivity starting from s=13 demon-

strates the fact that authors who have co-authored at least in 13

papers are more likely to collaborate with each other (signified

by the denser connections within a connected component of an

s-line graph). In this way, eigenvalues can provide insight into

how well each of the connected components in an s-line graph

remains connected and consequently provide insight about the

original hypergraph connectivity. In addition, as the s value

grows, these techniques can assist in understanding how well

the connectivity is preserved.

C. Uncovering Collaborations Among Actors
Consider uncovering groupings of actors who have collab-

orated on at least s movies. We can query this information

from Internet Movie Database (IMDB) by constructing a

hypergraph (where the movies are vertices, and actors are

hyperedges), and computing the s-line graphs. We compute s-

connected components and s-betweenness centrality on these

s-line graphs. We start by working on three database ta-

bles from the database: title.basic, name.basic and

title.principals [16]. These tables contain approx. 11

million titles, approx. 8 million actor names, and approx. 18

million principal cast/crew for titles respectively.
The three collaboration networks that we uncovered within

IMDB are reported below. Only the actors having a non-zero
centrality scores are shown. These actors collaborated in more
than 100 movies together:
(compute s-connected components) 4 us
Here are the 100-connected components:
[Adoor Bhasi, Bahadur, Paravoor Bharathan, Jayabharati,

Prem Nazir], [Matsunosuke Onoe, Suminojo],
[Kijaku Ôtani, Kitsuraku Arashi],[Panchito, Dolphy].
(compute s-betweenness centrality) 15 us
Adoor Bhasi(0.1111), Matsunosuke Onoe(0.0111),
Kijaku Ôtani(0.0111) //normalized score

We observe that, for the network in which Adoor Bhasi

is a member, he has a centrality score of 0.11, while others

have a score of 0. This means that Adoor Bhasi is the most

important actor. Specifically, this network is a star graph

where Adoor is the center vertex because all the other actors

have a zero centrality score. Previous multigraph-formulation

approach implemented in Python to compute betweenness

centrality along took 10 hours on a Windows 10 machine (a

3.2 GHz CPU with 8 GB RAM) [29]. On the other hand, our

implementation took a total of 80ms to execute on a Mac Mini

(M1 chip, with 16GB RAM) to compute the 100-line graph,

100-connected components and 100-betweenness centrality.

VI. EXPERIMENTAL ANALYSIS

In this section, we evaluate the performance of our s-line

graph algorithms in comparison with the algorithms proposed

in [30] and an efficient SpGEMM algorithm. We also discuss

the scalability, workload characteristics and evaluation of the

workload balancing techniques of our proposed algorithms.

Table III summarizes the shorthand notations we use for differ-

ent algorithms with different workload distribution strategies.

A. Experimental Setup
Our experiments are run on a machine with a two-socket

Intel Xeon Gold 6230 processor, having 20 physical cores

per socket, each running at 2.1 GHz, and 28 MB L3

cache. The system has 188 GB of main memory. Our code

is implemented in C++20, parallelized with Intel oneTBB

2020.3, and compiled with GCC 10.2 compiler and -Ofast
-march=native compilation flags.

B. Dataset
We conducted experiments with real-world hypergraphs

(Table IV) from various domains, ranging from social to

cyber to web. The activeDNS (ADNS) dataset from Georgia

Institute of Technology contains mappings from domains to IP

addresses [26]. When constructing hypergraphs with ADNS

dataset, we consider the domains as the hyperedges and IPs

as vertices. Additionally, we ran our experiments with datasets

curated in [37]. For these curated datasets, in particular, each

hypergraph, constructed from the social network datasets such

as com-Orkut and Friendster in Table IV, are materialized

by running a community detection algorithm on the origi-

nal dataset obtained from Stanford Large Network Dataset

Collection (SNAP) [28]. In the resultant hypergraphs, each

community is considered as a hyperedge and each member of

a community as a vertex. Other larger datasets include Web,

and LiveJournal, collected from Koblenz Network Collection

(KONECT) [25] as bipartite graphs.

Additionally, we selected two large datasets: Amazon-

reviews [1] (where hyperedges are sets of product reviews on

Amazon, and nodes are product categories) and Stackoverflow-

answers [1] (where hyperedges are sets of questions and
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nodes are the tags for questions answered by users on Stack

Overflow).

Notation Algo. Partitioning Relabel-by-degree

1BA Algo. 1 Blocked Ascending
1BD Algo. 1 Blocked Descending
1BN Algo. 1 Blocked No
1CA Algo. 1 Cyclic Ascending
1CD Algo. 1 Cyclic Descending
1CN Algo. 1 Cyclic No
2BA Algo. 2 Blocked Ascending
2BD Algo. 2 Blocked Descending
2BN Algo. 2 Blocked No
2CA Algo. 2 Cyclic Ascending
2CD Algo. 2 Cyclic Descending
2CN Algo. 2 Cyclic No

TABLE III: Notation for different algorithms with different parti-
tioning techniques and relabel-by-degree ordering.

Type hypergraph |V | |E| dv de Δv Δe

Social
com-Orkut 2.3M 15.3M 46 7 3k 9.1k
Friendster 7.9M 1.6M 3 14 1.7k 9.3k

LiveJournal 3.2M 7.5M 35 15 300 1.1M

Web
Web 27.7M 12.8M 5 11 1.1M 11.6M

Amazon-reviews 2.3M 4.3M 32 17 29k 9.4k
Stackoverflow-answers 1.1M 15.2M 2 24 356 61.3k

Cyber activeDNS 4.5M 43.9M 11 1 714.6k 1.3k
Email email-EuAll 265.2k 265.2k 2 2 7.6k 930

TABLE IV: Input characteristics. The number of vertices (|V |) and
hyperedges (|E|) along with the average degree (d), and maximum
degree (Δ) for the hypergraph inputs are tabulated here. All the
hypergraphs have a skewed hyperedge degree distribution.
C. Performance Analysis

In Figure 7, we report the performance of different al-

gorithms listed in Table III. The execution time for each

algorithm is normalized w.r.t. 1CN (Algorithm 1 with cyclic

distribution and no relabeling). Here, we do not report results

of Algorithm 3, as it fails on most of the datasets (except for

email-EuAll) due to its memory limitation.

As observed from Figure 7, our algorithm (Algorithm 2), in

conjunction with the right combination of workload distribu-

tion strategy and relabel-by-degree, performs best and achieves

≈2×−31× speedup for Web, and LiveJournal datasets. Larger

inputs with skewed degree distribution (containing a handful

of high-degree hyperedges) perform best when run with 2BA

(Algorithm 2 with blocked distribution and hyperedges rela-

beled by degrees in ascending order). Interestingly, relabeling

the hyperedges based on their degrees (both ascending and

descending) does not provide drastic performance benefit

for Friendster, Amazon-reviews and Stackoverflow-answers.

These 3 datasets have smaller maximum degrees (Δe). Hence,

relabel-by-degree does not provide significant benefit in im-

proving the performance. In this case, the additional overhead

of relabeling the hyperedges based on degrees heavily penal-

izes the execution time (we included the pre-processing time

to relabel by degree in the total execution time).

D. Strong Scaling
We conducted strong scaling experiments for our algorithms

with different hypergraph inputs and we report the results
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Fig. 7: Speedup relative to Algorithm 1 with cyclic work distribution
(1CN) where s = 8.
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Fig. 8: Strong scaling results with blocked distribution and cyclic
distribution for Algorithm 2 when s = 8.
in Figure 8. Here we double the number of threads while

keeping the input size constant. The performance of the

algorithms improves up to 16 threads. Beyond 16 threads,

performance does not improve significantly. For inputs with

highly-skewed degree distribution (LiveJournal, com-Orkut,

Web), 2CA demonstrates best scaling behaviour, as cyclic dis-

tribution enables better load balancing. Both block and cyclic

distributions without relabeling achieve similar performance.
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Fig. 10: Workload distribution among 32 threads when partitioning
the hyperedges (outermost loop of the s-line graph algorithms) in a
blocked or cyclic manner in Algorithm 2 for LiveJournal input.

E. Weak Scaling
We performed weak scaling experiments of Algorithm 2

with the activeDNS dataset using blocked workload distribu-

tion strategy. Here we approximately double the size of the

hypergraph (workload) as we double the number of threads

(computing resources). We start with 4 AVRO files worth of

data (dns 4) and scale up to 128 files (dns 128). With larger s
values, the performance of the algorithms improves (Figure 9).

F. Workload Characterization
Figure 10 shows the number of hyperedges visited by each

thread in the innermost loop of Algorithm 2 with different

partitioning strategies for LiveJournal dataset. As can be

observed from Figure 10, without relabel-by-degree, cyclic

distribution achieves better workload balance than blocked

distribution. We also observe in Figure 7 that blocked or

cyclic distribution, in conjunction with relabeling by degree

in ascending order, performs best overall. We investigated this

observation in details with Intel VTune Profiler and found

out that relabel-by-degree in ascending order provides more

favorable cache reuse (due to almost 0.5x less LLC cache

misses) to Algorithm 2 than the descending order.

G. Comparison with an SpGEMM-based Approach
SpGEMM+Filter SpGEMM+Filter+Upper 1CA 2BA
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Fig. 11: Comparison of Algorithm 1, and Algorithm 2 with an
SpGEMM-based approach. Here SpGEMM+Filter+Upper refers to
only consider the upper triangular part of the adjacency matrix.

We also compare the performance of our hashmap-based

algorithms and Algorithm 1 with a state-of-the-art SpGEMM-

based library [33]. We modified the SpGEMM code to add

the filtration step, and to only consider the upper trian-

gular part of the matrix. Here, the SpGEMM library first

computes HHT , and then filters the edges with at least

s overlaps. We report the results with email-EuAll and

Friendster datasets. The SpGEMM library fails to run on

other larger hypergraph datasets. The results are reported

in Figure 11. With all datasets and for different s values,

Algorithm 2 runs faster than the SpGEMM+Filter+Upper

algorithm. The efficient algorithm (Algorithm 1) runs faster

than the SpGEMM+Filter+Upper algorithm with the email-

EuAll dataset, but slower than the SpGEMM+Filter+Upper

algorithm with Friendster dataset (for smaller s values). With

larger s values in all cases, our algorithm is orders of mag-

nitude faster than the SpGEMM+Filter+Upper approach. The

improvement can be attributed to the degree-based pruning.

Note that computation of the s-line graphs with higher s values

(s = 1024 for Friendster here) is still relevant, because, even

with such a large s overlap constraint, we found 20 connected

components in the constructed s-line graph. This reveals that

these 20 communities which share at least 1024 common

members are the core of Friendster dataset.

Both the efficient and our hashmap-based algorithm are

more suitable than off-the-shelf SpGEMM algorithm for the

s-line graph computation. The SpGEMM algorithm is too

general since it has to compute and store the product matrix

before applying filtration upon the matrix. In contrast, our

algorithm performs an in-place filtration. In addition, the

SpGEMM+Upper algorithm performs half of the total work

by only considering the upper triangular part of the hyperedge

adjacency matrix. However, it is still orders of magnitude

slower than our algorithm (especially with larger s values).

H. Comparison with the Clique-expansion Approach
In Table V, we report the performance results of Algo-

rithm 2 when s=1 (the clique expansion graph) and s=8 on

larger datasets. We ran the Label Propagation-based Connected

Components (LPCC) after computing the s-line graphs with

Algorithm 2 (2CA). With s=1, only Friendster and Livejournal

datasets completed execution on a 128GB-memory machine.

Friendster LiveJournal com-Orkut Web
s=1 12s 76s OOM OOM
s=8 4s 31s 59s 1510s

TABLE V: Execution time of s=1 (clique expansion)-based and
s-line graph-based with s=8 Label-Propagation Connected Compo-
nents (LPCC) with Algorithm 2 (2CA). With s=1, com-Orkut and Web
ran out of memory on a 128GB machine. The reported time includes
end-to-end execution time of our framework.

VII. RELATED WORK

Hypergraph methods are well known for their applications

in computer science; for example, hypergraph partitioning

enables parallel matrix computations [8] and application in

VLSI [22]. In the network science literature, researchers have

devised several path and motif-based hypergraph data analytics

measures such as clustering coefficients and centrality metrics

[9]. Although an expanding body of research attests to the

utility of hypergraph-based analyses [4], [15] , and we are

seeing increasingly wide adoption [19], [27], [32], many

network science methods have been historically developed

explicitly for graph-based analyses. Naik [34] wrote a survey
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on theoretical developments on line graphs. Bermond et al.
[6] studied the properties of the s-line graphs of hypergraphs.

Shared-memory C++-based framework Hygra [37], and

distributed-memory frameworks such as Chapel-based

CHGL [20], Apache Spark-based MESH [14] and HyperX

[21] presented a collection of efficient parallel algorithms

for hypergraphs in their frameworks. These frameworks

either rely on the original hypergraph or the expansion

graphs of hypergraphs. None of the works computes s-line

graphs with s > 1 and therefore cannot compute the s-walk

measures. Moreover, in MESH/HyperX, on 8 compute nodes,

a Label-Propagation-based Connected Component algorithm

with clique expansion takes more than 2000s. In contrast,

our framework takes ≈6s for the same computation, on a

single-node.
VIII. CONCLUSION

The notion of s-line graphs of a hypergraph is a novel way

to interpret relationships among different entities in a given

dataset. In this paper, we have presented a scalable s-line graph

computation framework by identifying a core set of stages

required for end-to-end s-metric computation. We proposed

new parallel algorithms for s-line graph computations and

explored different workload distribution strategies for our

parallel algorithms in conjunction with considering relabel-

by-degree and triangularization of the adjacency matrix as

optimization techniques. We demonstrated that our algorithms

outperform current state-of-the-art algorithms. In particular,

hypergraphs with skewed-degree distribution can benefit from

relabeling the hyperedge IDs by degrees. We showed that

proper combination of algorithmic optimization and workload

balancing technique can significantly improve the performance

of the s-line graph computation stage, which is the most

important and compute-intensive part of the framework.
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