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ABSTRACT OF THE DISSERTATION

Random walks on directed graphs and orientations of graphs

by

Sinan Giiven Aksoy

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Fan Chung Graham, Chair

We apply spectral theory to study random processes involving directed
graphs. In the first half of this thesis, we examine random walks on directed graphs,
which is rooted in the study of non-reversible Markov chains. We prove bounds on
key spectral invariants which play a role in bounding the rate of convergence of the
walk and capture isoperimetric properties of the directed graph. We first focus on
the principal ratio, which is the ratio of maximum to minimum values of vertices
in the stationary distribution. Improving upon previous bounds, we give a sharp
upper bound for this ratio over all strongly connected graphs on n vertices. We
characterize all graphs achieving the upper bound and give explicit constructions
for these extremal graphs. Additionally, we show that under certain conditions,

the principal ratio is tightly bounded. We then turn our attention to the first

x1i



nontrivial Laplacian eigenvalue of a strongly connected directed graph. We give
a lower bound for this eigenvalue, extending an analogous result for undirected
graphs to the directed case. Our results on the principal ratio imply this lower
bound can be factorially small in the number of vertices, and we give a construction
having this eigenvalue factorially small.

In the second half, we apply spectral tools to study orientations of graphs.
We focus on counting orientations yielding strongly connected directed graphs,
called strong orientations. Namely, we show that under a mild spectral and min-
imum degree condition, a possibly irregular, sparse graph G has “many” strong
orientations. More precisely, given a graph G on n vertices, orient each edge in
either direction with probability 1/2 independently. We show that if G satisfies

a minimum degree condition of (1 + ¢;)log,n and has Cheeger constant at least

log, logy n
logy n

nected with high probability. This Cheeger constant bound can be replaced by

, then the resulting randomly oriented directed graph is strongly con-

an analogous spectral condition via the Cheeger inequality. Additionally, we pro-
vide an explicit construction to show our minimum degree condition is tight while
the Cheeger constant bound is tight up to a log,log,n factor. We conclude by

exploring related future work.
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Chapter 1

Introduction

1.1 Notation and Preliminaries

We utilize graph theory and matrix analysis notation that is largely stan-
dard. A graph G = (V, E) is a set of vertices V := V(@) and set of edges F := E(Q)
where E C {{u,v} : u,v € V}. Unless otherwise stated, we assume that G is
simple, meaning that each edge {u,v} € E consists of a pair of distinct vertices
u,v € V, and V is finite. If {u,v} € E, we say v and v are adjacent and sometimes
write u ~ v. For each u € V(G), the neighborhood of u, denoted by N (u) := Ng(u)
is the set of vertices {v : {u,v} € E}. The degree of a vertex, denoted d(u), is

|IN(u)|. A walk of length k is a sequence of vertices vg, vy, ..., v, where {v;, v;11}
is an edge. If, for all u,v € V, there exists a walk u,...,v, then we say G is
connected.

A directed graph D = (V, E) is defined analogously, except that the edge
set £ C {(u,v) : u,v € V} consists of ordered pairs of vertices. That is, a
directed edge from vertex u to v is denoted by (u,v) or u — v, and we say v is
an out-neighbor of u, or u is an in-neighbor of v. Again, we assume D is simple
throughout. For each u € V', the out-neighborhood of u, denoted by N7T(u), is
the vertex set {v : (u,v) € E} and the out-degree of u, denoted by d*(u), is
|N*(u)|. Similarly, the in-neighborhood and in-degree of u are denoted by N~ (u)
and d~(u) respectively. A walk of length k is a sequence of vertices vg, vy, . .., vk

where (v;,v;41) is an edge. If, for all u,v € V, there exists walks u,...,v and



v,...,u, then we say D is strongly connected.

We will study various matrices associated with graphs. Unless otherwise
stated, all matrices are n x n matrices over the complex numbers C, where n is
the number of vertices in the associated graph. We write 1 to denote a column
vector of ones, I is the identity matrix, and AT and A* denote the transpose and
conjugate transpose of matrix A, respectively. We say a matrix A is positive and
write A > 0 if all entries in A are positive. We write eigenvectors as complex-
valued functions on the vertex set V = {1,...,n}; hence f(u) denotes entry u of
vector f. For two such complex-valued functions f, g, we let (f,g) =>__f (x)rx)
denote the usual inner product. We sometimes write [n] to denote {1,...,n}.

Finally, we will utilize standard asymptotic notation: we say a function
f(n) = O(g(n)) if for all sufficiently large values of n there exists a positive constant
csuch that | f(n)| < c¢-|g(n)|; similarly, we write f(n) = Q(g(n)) if g(n) = O(f(n)),
and f(n) = ©(g(n)) if both f(n) = O(g(n)) and f(n) = Q(g(n)). Lastly, f(n) =

f(n) fn) _

o(g(n)) if limy oo g0y = 0 and if lim,, o0 g5 = 1, we write f(n) ~ g(n) or

f(n) = (1+o(1)g(n).

1.2 Random walks on directed graphs

1.2.1 The transition matrix and stationary distribution

We begin by briefly reviewing some relevant concepts concerning random
walks on graphs. The study of random walks on graphs is more generally rooted in
the study of Markov chains. In what follows, we gear our exposition explicitly to-
wards random walks on directed graphs, although many of the concepts discussed
have natural analogs in the undirected case. As we will see, problems that are
straightforward for undirected graphs often have relatively complicated counter-
parts in the directed case. We assume only basic knowledge of probability theory;
for a general survey on random walks on graphs, see [34].

A discrete-time, finite, time-homogeneous Markov chain is a sequence of

random variables X, X5, ... taking values in a finite state space S such that for



all ¢, the sequence satisfies the Markov property and time-homogeneity, i.e.

PXipr =2 | Xi =21, Xy = 20) = P(Xpq = 240 | Xy = 29),
]P)(Xt—f—l =X | Xt = y) = ]P)(Xt =T | Xt—l = y)

A random walk on a graph G = (V| E) is such a Markov chain X, X7, ...
defined by a transition probability matriz P in which entry P(u,v) = P(X;11 =
v | Xy = u) for every u,v € V. Letting f;(u) = P(X; = u) denote the probability
distribution after t steps, P satisfies

ft—l—l = ftP>

where f; is viewed as a row vector. Consequently, if f; denotes any initial proba-

bility distribution, we have
fi = foP".
Unless otherwise stated, we restrict attention to studying simple random
walks on a given directed graph G' = (V, E), in which the probability transition
matrix P is given by

L if (u,v) € E,
Pu,v) = 4™ (u:0)

0 otherwise.

That is, in a simple random walk, the probability of transitioning from a
vertex to any of its out-neighbors is equally likely. More generally, we note that
every discrete-time, finite Markov chain can be naturally viewed as a random walk
on an appropriately weighted directed graph. Namely, if w,, > 0 denote edge

weights, a general probability transition matrix P can be defined as

Wy
Zz Wz

A probability distribution function 7 : V/(G) — RTU{0} satisfying " 7(v) =

P(u,v) =

1 is said to be a stationary distribution of a random walk if
P =,

where 7 is viewed as a row vector.



In the case of undirected graphs, it can be easily shown that m(v) = %
is a stationary distribution for a simple random walk on any undirected graph and
is unique if the graph is connected. In general, there is no such closed formula
for the stationary distribution in the directed case; nonetheless, a closed formula
does exist for directed graphs in which the in-degree of each vertex is equal to its

out-degree, called Fulerian directed graphs.

Example 1. Fulerian directed graphs have stationary distribution proportional to

their out-degree sequences, m(v) = Z(ﬁd(fgu)' Consequently, the stationary distribu-

tion of a directed regular graph with in-degrees and out-degrees all equal is given

by the uniform distribution, T = 1/n.

Finding a closed formula for the stationary distribution of certain explicit
families of directed graphs can be non-trivial, often requiring solving a set of re-
currence relations. To illustrate this, we consider a “modified directed binary tree”

example below and sketch steps for obtaining a closed formula for 7.

Example 2. Let D be a modified perfect binary tree of height h with vertex set
V<D) = {U1,U2, R ,U2h+1_1} and edge set:

E(D) = {(vs,v3), (v5,09341) : 1 <i < 2" =1} U

{(vi,vig1) 2" <i <2 — 2} U {(vgnsa_y, v1) )

In other words, D is a perfect directed binary tree with a directed path across ver-

tices in the bottom level leading back to the root. See Figure[L.1] for an illustration.

Ultimately, we can obtain a formula for 7 by analyzing the set of equations

given by P = x. We sketch the steps below:

e Observe z(2"1! — 1) = z(1), z(i) = x(j) for all i, at the same depth, and
(i) = 29 if  has depth k < h and j has depth & — 1.

e For leaf vertices at depth h,

x (201

r(i+1)= 3

+ (7).



Figure 1.1: The directed graph D in Example |2/ for h = 3. The blue vertices have
the maximum values in 7 while the red vertex has the minimum value in .

e Setting z(2""!) = 1, solving the above recurrence, and letting S = >, (i),
we have
1 |21 ifiisat depthj<h
(i) =54 :
S 172;+1 for 2h < i < 2htl _ 1
In Example [2] the formula we obtained for 7 implies that the largest entry
of 7 is 2" times as large as the smallest; that is,
max; (i)  w(1)
min; (i)  w(2")

We remark that, in the undirected case, the closed formula for 7 ensures
that all entries of the stationary distribution are within a factor of n, the number
of vertices. However, in the directed case, this is not guaranteed. For instance,
[15, Example 4] shows that the entries of the stationary distribution can be expo-

nentially small in n for directed graphs. In general, Chung gives the bound:

Proposition 1 (Chung [15]). For a strongly connected graph G on n vertices, the

stationary distribution © of a random walk on G satisfies:

ax (i) < kP mi ;
ig\l/(é)ﬂ-(l)_ jgl(%)ﬂ(J),

where k is the mazimum out-degree and D is the diameter of G.

Below, we sketch our own proof of this fact.



Proof. Since (PP);; > 5, we have

Thus, for all 4, j € V(G), we have:

x(i) 25 < ()

]

As we will explain further in Section|1.3.3] the extreme values of the station-
ary distribution play an important role in controlling the behavior of the random

walk.

1.2.2 Perron-Frobenius theory and ergodicity

Two fundamental questions in the study of random walks concern the ex-
istence and uniqueness of a stationary distribution, as well as convergence to that
distribution. Namely, a random walk is said to be ergodic if for any initial dis-
tribution f, the random walk converges to the unique stationary distribution m,
ie.,

lim fP* = .

k—o00

For undirected graphs, the spectral decomposition of P shows a random walk is
ergodic if and only if the graph is connected and non-bipartite (see [3] for fur-
ther details). However, for directed graphs, no such closed formula exists for
the stationary distribution and a more nuanced ergodicity criterion is required.
The Perron-Frobenius theorem for non-negative matrices plays a central role in
establishing conditions for ergodicity, as well as the existence of the stationary

distribution.

Theorem 1 (Perron-Frobenius Theorem [25], 27]). Let A be non-negative matriz

that 1s irreducible, i.e (I +|A|)"! > 0, with spectral radius p(A). Then



(a) p(A) > 0.
(b) p(A) is an algebraically (and hence geometrically) simple eigenvalue of A.

(¢) There are positive vectors x and y such that Ax = p(A)x and yT A = p(A)yT.

From the definition of the probability transition matrix P, it is easy to see
that (P¥),, > 0 if and only if there exists a path of length k from u to v; hence
strongly connected directed graphs have irreducible probability transition matrices.
Furthermore, since ) | P(u,v) = 1 for each u € V' of a strongly connected directed
graph, p(P) <1 and

P1=1,

and thus the all ones vector 1 is trivially the (right) Perron eigenvector associated
with eigenvalue 1 = p(P). By the Perron-Frobenius theorem, there exists a left

(row) eigenvector ¢ with positive entries such that

oP = ¢.

We may scale ¢ so that > ¢(u) = 1, in which case ¢ is the (unique)
stationary distribution which we refer to as the Perron vector. However, as the
following simple example shows, existence of the Perron vector for strongly con-

nected directed graphs does not guarantee ergodicity:

Example 3. Labeling the vertices of a directed cycle V- = {1,2,3}, let e; be the
probability distribution which places weight 1 on vertex v and 0 on all other vertices.
Then

e;P" = ey,
where the indices are taken modulo 5.

Thus, we see that while a simple random walk on an undirected cycle of
length 3 is ergodic, a simple random walk on a directed cycle of length 3 is not.
In the above example, P* oscillates between 3 transition matrices, making conver-
gence to the stationary distribution impossible for other initial distributions. The

period of this random walk is 3. In general, the period of a strongly connected



directed graph is the number of eigenvalues of P with modulus 1; directed graphs
with period 1 are aperiodic. In the language of directed graphs, the period is the
greatest common divisor of the lengths of all its directed cycles. Having defined
aperiodicity and irreducibility, we can now state the ergodicity criterion for random

walks on directed graphs.

Theorem 2 (Ergodicity for random walks on directed graphs). A random walk on

a directed graph G is ergodic if and only if G is strongly connected and aperiodic.

For completeness, we sketch an elementary proof of Theorem [2] which fol-

lows mainly from the following lemma:

Lemma 1. Let P be the probability transition matriz for a strongly connected,

aperiodic directed graph G with associated Perron vector ¢. Then ]}1_{210 Pk =1¢".
Proof. To simplify notation, let T = 1¢7. Since P1 =1, PT¢ = ¢, and 1T¢ =1,
it follows immediately that, for m =1,2,...
T =17, (1.1)
P"Y =TP"="7T. (1.2)
And, by induction, it easily follows from Egs. and that
(P=T)"=(P"="1). (1.3)

Now, note that if (P — T)xz = Az for = # 0, then by Eqgs. and (L.2),
we have T(P—T)z = 0so Tz = 0, and thus (P—"7")z = Pz = Az. Hence, if (1, )
is an eigenpair for (P — T) then (1,z) is also an eigenpair for P. But, since P
is an irreducible, non-negative matrix, the Perron-Frobenius theorem guarantees
that p(P) = 1 has algebraic (and thus geometric) multiplicity of 1, so it must be

that x = c¢- 1 for some scalar ¢ # 0. This yields the contradiction
r=P—-"T)z=(P—-")c-1=c-1—c-1=0,

so 1 cannot be an eigenvalue of (P—7Y). Ordering the eigenvalues of P by increasing
modulus, |A| < -+ < | A1 < Au| =1, either p(P—T) =0o0r p(P—71) = | A1l

In either case,

p(P =) < [Ans| < 1.



Finally, since for any matrix A € M, lim,,_,o(A) = 0 if and only if p(A) <
1, combining the above with Eqn. (1.3) implies that as m — oo,

(P—T)" = (P"—T) - 0.
O

Proof of Theorem[2]. The sufficiency of the condition follows immediately from
Lemma . If for any initial distribution f, limy_. fP* = 7, where 7 > 0 de-
notes the stationary distribution, then P*¥ > 0 for some k. Hence G must be
strongly connected. Furthermore, by [27, Theorem 8.5.2], if A is a non-negative
matrix with A* > 0 for some k, then p(A) is an algebraically simple eigenvalue; so

(G is aperiodic as well. O

Lastly, we note that the ergodicity criterion of irreducibility and aperiodicty
can be characterized in matrix theoretic language by primitivity. A non-negative

square matrix A is said to be primitive if there exists some positive natural number
k such that A* > 0.

Remark 1. A directed graph G is irreducible and aperiodic if and only if the

probability transition matriz P of G is primitive.

1.3 Spectral graph theory

1.3.1 The normalized Laplacian

In addition to the probability transition matrix P, an important object
of study in our analysis of random walks on directed graphs will be the directed

normalized Laplacian matrix, as defined by Chung. Namely,

Definition 1 (Chung [15]). Let G be an n-vertex, strongly connected directed graph
with associated probability transition matriz P. The normalized Laplacian L of G
18
PY2PH-1/2 4 p-1/2prpl/2
5 ;
where ® = diag(p(1),...,¢(n)) is a diagonal matriz with the entries of the Perron

I —

vector ¢ of P on the diagonal.
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By construction, note that £* = £ and hence £ is Hermitian. If one takes

G to be an undirected graph in the above definition, then applying the closed

d(u)
22, d(v)
examining £ entry-wise, one can see the directed normalized Laplacian reduces to

formula for the stationary distribution in the undirected case ¢(u) = and

the undirected normalized Laplacian, defined by
L=1-—DY2AD7 /2,

where D = diag(d(1),...,d(n)) denotes the diagonal degree matrix and A denotes

the adjacency matrix. We write the eigenvalues of £ in increasing order, where
O=X<A << A

A useful tool in analyzing both the undirected and directed normalized
Laplacian is the variational characterization of eigenvalues given by the Courant-
Fischer theorem. In particular, the Courant-Fischer theorem characterizes the
eigenvalues of a Hermitian matrix as solutions to optimization problems over sub-

spaces S of fixed dimension.

Theorem 3 (Courant-Fischer [27]). For any Hermitian A € C™*™ with eigenvalues
Ao <A << A

A
A; = min max {z, Az) ,
) S €S <£Ij',$>
dim(S)=i+1 x#0
A
A =  max min M
8 \wes (z,z)
dim(S)=n—i \ z#0

As a notable consequence of the Courant-Fischer theorem, the Rayleigh-

Ritz theorem provides a simple expression for the largest and smallest eigenvalues.

Theorem 4 (Rayleigh-Ritz [27]). For any Hermitian A € C™*" with eigenvalues
Ao S A< <A,
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In the case of the normalized Laplacian, it is easy to see its eigenvalues are
non-negative and \g = 0 since £L&/21 = 0. We note that R(A,x) := % =4z
is sometimes referred to as the Rayleigh quotient. Applying the Courant-Fischer
theorem and rewriting the Rayleigh quotient for the directed normalized Laplacian

L, Chung [15] showed that

M= imf 9E9)
gC” (g, 9)
(9:101/2)=0
> 1f(u) = f)Pé(w) Plu,v)
= inf u=y

5, fa)dtu=0 23 |f(v)Po(v)

where g = f®'/2. In the undirected case, this characterization of A\; can be written

as

SO (f(w) - f(0))?
)\1 = inf ury

> sziﬁcdrguho Z fw)*d(v)

This first non-trivial eigenvalue, \;, is a key parameter for controlling a
plethora of graph properties. In Section [1.3.3] we will see how A\; can be used to
bound the rate of convergence of an ergodic random walk. Below, we describe the

role of \; in capturing isoperimetric properties of the graph.

1.3.2 Circulations and the Cheeger inequality

The classical isoperimetric problem in geometry concerns finding the maxi-
mum area-enclosing curve, among all curves of a given length. Isoperimetric prob-
lems in graphs can be framed analogously by measuring the “boundary” of a subset
of vertices, taken to be the edges leaving that set, relative to some notion of the
“size” of that set. In the case of undirected graphs, a notion of vertex subset size

is given by volume, defined by

vol(S) =) ~d(v),



12

for some S C V(G). However, there is no such natural notion of vertex degree or
volume in the directed case, as vertices in a directed graph have both in-degree and
out-degree, which may differ. Nonetheless, one can define a measure of volume in
the directed case by using the stationary distribution of a random walk. This is
achieved by considering a special type of flow on the edges of the directed graph
called a circulation. More precisely, let F' : E(G) — RT U {0} denote a function
assigning a non-negative value F'(u,v) to each edge (u,v) in a directed graph G.

We call F' a circulation if at each vertex v,

Z F(u,v) = Z F(v,w).

uEJ\}L’(v) we]\lfUJr(U)
As shown in [I5], one can associate a circulation F, with the left Perron

vector ¢ of a probability transition matrix P by defining, for each (u,v) € F(G),

P@(U,U)=:¢(U)P(U,U%

since

2{: FE(U,U):: 2{: ¢(U)PTU70)

uE]\}L_ (v) uEZ\}u_ (v)

= (v)
1
=00 D &

w
wENT (v)

= Z o(v)P(v,w) = Z Fy(v,w).

w w
weNT (v) weNT(v)

Accordingly, the flow at a vertex v is given by its value in the stationary

distribution, since

s)= Y Fyluv)= > Fyv,w).
ueEN~(v) weNT(v)

We can now define the size of a vertex subset and its boundary using this
notion of circulation. For a directed graph G, the out-boundary of S C V(G),
denoted 0S5, consists of all edges (u,v) with v € S and v ¢ S. We define:

F(0S)= Y F(uv),

ueSwgS
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F(S):Z Z F(u,v).

vES ueN~(v)
The Cheeger ratio h(S) of a subset S € V(G) is

_ Fy(0S)
M) = i (Ea(9), Fa()}

and the Cheeger constant of a directed graph G is h(G) = mingcy () h(S). We
note that the Cheeger constant is sometimes called isoperimetric constant or con-
ductance. While computing the Cheeger constant for general families of graphs
is not feasible in practice, the Cheeger inequality shows that normalized Lapla-
cian eigenvalues can provide an estimate of A(G). Namely, in the case of directed

graphs, Chung proved:

Theorem 5 (Directed Cheeger inequality [15]). If G is a directed graph with nor-
malized Laplacian eigenvalues 0 = \g < Ay < --- < \,_1 and Cheeger constant

h(G), then

We note that, in the undirected case, the Cheeger ratio of a subset is

e(S,S)
min(vol(S), vol(S))’

h(S) =

where ¢(S,S) denotes the number of edges between S and its complement S.
Similarly, the (undirected) Cheeger constant is then the minimum of this Cheeger
ratio over all vertex subsets and an identical statement for the Cheeger inequality
in Theorem |5 holds in the undirected case. We note that the Cheeger inequality for
the adjacency matrix of undirected graphs was first proved by Alon and Milman
[4] and Tanner [49] for regular graphs. For general undirected graphs, see [14]
for a proof of the undirected Cheeger inequality in terms of normalized Laplacian

eigenvalues.

1.3.3 Bounding the rate of convergence

In Section [1.2.2] we reviewed the necessary and sufficient conditions for a

random walk to converge to the unique stationary distribution. For such ergodic
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Markov chains, a subsequent question, which has been the topic of much research
(see [38] for a survey), is to determine how fast the random walks converges to the
stationary distribution. In addressing this question, one can consider a variety of
metrics to measure distance between the current and stationary distribution. For

example, one might consider convergence in the standard Euclidean Ly norm,
Ap(s) = max| fP* ]|

However, this metric may be considered weak for our purposes since it doesn’t re-
quire convergence of the distribution at every vertex of the graph. A stronger, and
perhaps more popular notion of convergence is given by total variation distance.

Namely, the total variation distance Ary after s steps is

Ary(s) = e max, ;eA(P (y,r) — m(x))
1
— - ps _ .
5 max (G)I (y,2) — (x|

The x-square distance is

A'(s) = max
VD \eévia)

and lastly, the relative pointwise distance simply determines the largest relative

distance between the two distribution, i.e.

R |P*(z,y) — ¢(y)|
Als) = 2y o(y) '

We note that convergence bounds for one of the above metrics may imply

bounds for another; for example, since
1 /
AT\/(S) S §A (S),

we have that convergence upper bounds for A’(s) imply bounds for Azy (s) as well.
See [14] for further comparison of these metrics.
In deriving convergence bounds for the directed case, Chung considers a

modified random walk called a lazy random walk. At each step in a lazy random
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walk, we stay at the current vertex with probability 1/2, and with probability 1/2,
move to an out-neighbor of that vertex chosen uniformly at random. In other

words, the transition probability matrix of a lazy random walk is

[+P
P="0

where P is the probability transition matrix of the simple random walk. Thus,
one can think of a lazy random walk as a weighted random walk in which we add
loops to each vertex. Consequently, a lazy random walk is always aperiodic, and
hence, lazy random walks are ergodic for strongly connected directed graphs. In
this way, lazy random walks allow us to relax the assumption of aperiodicity while
preserving key spectral properties of P. Namely, note that the Perron vector ¢ of
P is a left eigenvector of P associated with eigenvalue 1. Furthermore, if P has
left eigenvalues
P05 P1s -+ -5 Pn—1 = 1,

14-p;i
2

14-p;
2

then P has left eigenvalues , where | < 1 since P is aperiodic. Chung [15]
proved the following theorem establishing an upper bound on the convergence rate

for a lazy random walk on a directed graph.

Theorem 6 (Chung [15]). Let G be a strongly connected directed graph on n
vertices with normalized Laplacian eigenvalues 0 = Ao < Ay < -+ < A\, and
Perron vector ¢. Then after at most s > 2\ *(— log(min, ¢(v)) + 2¢) steps of a

lazy random walk on G, we have

A(s) <e

Here, we see that normalized Laplacian eigenvalues and extreme values of
¢ play an important role in bounding the rate of convergence of random walks

on directed graphs. This theorem serves as part of our motivation for studying

maxy, ¢(u)
> ming ¢(u)’

normalized Laplacian £, in Chapter [2]

the principal ratio of the stationary distribution ¢, as well as A\; of the
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1.4 Strong orientations of graphs

1.4.1 Preliminaries and Robbins’ Theorem

The second half of this thesis concerns orientations of graphs, which natu-
rally define a family of directed graphs called oriented graphs. Let G be a simple
(undirected) graph with vertex set V(G) and edge set E(G). An orientation func-
tion of G is a sign-valued function o on {(u,v), (v,u) : {u,v} € E(G)} that defines
whether edge {u,v} € E(G) is oriented from u to v (in which case we write u — v)

or vice versa. More precisely,

o(u,v) = 1 ifu—>v'
-1 ifv—ou

The resulting directed graph D with vertex set V(D) = V(G) and edge
set E(D) = {(u,v) : o(u,v) = 1} is called an orientation of G. A directed graph
is called an oriented graph if it is an orientation of a simple graph. Equivalently,
oriented graphs are directed graphs without 2-cycles.

Our study of orientations of graphs will focus on the fundamental directed
graph property of strong connectedness. We call a strongly connected orientation a
strong orientation. A natural starting question in the study of strong orientations
is characterizing existence of a strong orientation for a given undirected graph G.
Here, the elegant Robbins’ Theorem provides a simple criterion based on edge
connectivity. Recalling that a connected graph G = (V| E) is k-edge connected if
G remains connected whenever fewer than k edges are removed from F, Robbins

proved:

Theorem 7 (Robbins’ Theorem [46]). A graph G admits a strong orientation if
and only if G is 2-edge connected.

Alternatively stated, Robbins’ Theorem states that graphs admitting strong
orientations are precisely connected, bridgeless graphs, where a bridge is an edge
whose removal increases the number of connected components of the graph. We

remark that the necessity of the condition in Robbins’ theorem is trivial, as it is
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clear that no orientation of a disconnected graph nor a graph featuring a bridge
edge can yield a strongly connected directed graph. To prove the condition is
sufficient, Robbins utilizes a tool called ear decomposition; we refer the reader to
[46] for details. We note Robbins’ theorem has since been extended to the broader
setting of mized multigraphs (see [6]), which are graphs whose edge sets E are in
fact multisets, allowing for multiple edges between a pair of vertices, as well as
both directed and undirected edges.

With regard to constructing strong orientations, linear-time algorithms
which detect strong orientations and construct them whenever possible are known
[20]. In particular, given an undirected graph G, a classic algorithm proceeds
by depth-first search, orienting edges in the depth-first search tree from ancestor
to descendant and, after all vertices have been uncovered, orienting any remain-
ing edges from descendant to ancestor. See [47] for a proof that this orientation
yields a strongly connected directed graph, provided the input graph is 2-edge
connected. Just as Robbins’ theorem has since been generalized to mixed multi-
graphs by Boesch and Tindell [6], Chung, Garey, and Tarjan [20] gave a linear-time

algorithm that constructs strong orientations in mixed multigraphs.

1.4.2 Counting strong orientations

Although the existence and construction of strong orientations are well-
understood topics, the task of counting strong orientations is less straightforward.
The topic of counting strong orientations enjoys a multidisciplinary history. In fact,
interest in counting strong orientations arose naturally in statistical mechanics in
studying ice-type models used to study crystals with hydrogen bonds [33]. In these
models, oxygen atoms form a square lattice, and the hydrogen ion between each
pair of oxygen atoms is located in one of two positions: “close” or “far”. This
configuration of hydrogen ions is said to satisfy Pauling’s Ice Rule [43]. Roughly
speaking, this states that of the four ions surrounding each atom, two are close and
two are far, on their respective bond. In this way, one can naturally associate an
Eulerian orientation (i.e. a strong orientation for which each vertex has equal in

and out-degree) of a 4-regular graph with an allowable configuration of hydrogen
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ions. See Figure for an example of this association.

"
» » - C )
n
n
- = = ( )
n
"

Figure 1.2: Left: Hydrogen ion (squares) configuration satisfying the ice rule,
where the intersection of two lines represents an oxygen atom. Right: the corre-
sponding graph orientation, where vertices represent oxygen atoms, and edge (u, v)
denotes that the hydrogen ion is close to v and far from wu.

The total number of possible configurations, first determined by Lieb [33],

is a key parameter in studying the residual entropy S of the model, defined as
S = k’B IH(Z),

where kg denotes Boltzmann’s constant, Z denotes the allowable configurations.
More generally, the problem of counting the number of Eulerian and strong
orientations of a given graph G is a special case of evaluating its Tutte polynomial,

T(G;x,y), defined recursively by

(
z-T(G\e;z,y) if e is a bridge
y-T(G/e;x,y) if e is a loop
T(G;x,y) =< )
1 it B(G) =2
\T(G\e; z,y)+T(G/e;x,y) otherwise

where for e € E(G), we let G\e denote the subgraph obtained from G by deleting
the edge and G/e denote the subgraph obtained by contracting e (i.e., deleting
e = {u,v} and replacing u,v € V with a single vertex w). The Tutte polynomial
captures a number of graph properties and also specializes to other well-known
polynomials (e.g. along zy = 1, T(G; z,y) specializes to the Jones polynomial of
an alternating knot associated with graph G [50]). We refer the reader to [22] 53]

for more discussion of the Tutte polynomial; here, we simply note that the number
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of Eulerian orientations of a given graph G is T(G;0,—2) and number of strong
orientations is 7'(G; 0, 2) [51]. In general, counting Eulerian and strong orientations
has been shown to be #P-hard (see [36] and [52] respectively), even for planar,
bipartite graphs.

Instead of exact counting, other researchers have approximated the number
of strong orientations for particular classes of graphs. In the case of a-dense graphs
G (i.e. graphs with minimum degree §(G) > an for 0 < a < 1), Alon, Frieze, and
Welsh [39] developed a fully polynomial randomized approximation scheme for
counting strong orientations. That is, they provided an algorithm that will, to an
arbitrary degree of accuracy, approximate the number of strong orientations of G
in polynomial time, depending on the size of G’ and the desired degree of accuracy.
Nonetheless, the a-density assumption precludes sparse graphs from this scheme.

In Chapter |3, we will show how eigenvalues can reveal information about
the number of strong orientations of a graph, even for possibly sparse, irregular

graphs. Below, we give a complete overview of the remainder of this thesis.

1.5 Overview of main results

The remainder of this thesis is divided into three chapters, all of which
concern problems in the spectral theory of directed graphs. In Chapter [2 we
examine the stationary distribution of random walks on directed graphs, as well
as A of the normalized Laplacian. In particular, we focus on the principal ratio,
which is the ratio of maximum to minimum values of vertices in the stationary

distribution. Here, our main results are:

e We give a sharp upper bound (Theorem |§|, p- for the principal ratio
over all strongly connected graphs on n vertices. We explicitly compute the
maximum principal ratio, characterize all graphs achieving this upper bound,

and give explicit constructions for the extremal graphs (Theorem , p. .

e We show that under certain conditions, the principal ratio is tightly bounded

(Theorem , p. . We also provide counterexamples (Examples ,
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pPp- | 47)) to show the principal ratio cannot be tightly bounded under

weaker conditions.

e We prove a lower bound (Theorem , p. on A, the first nontrivial
eigenvalue of the normalized Laplacian, for a strongly connected directed
graph. We also give a construction (Example |§|, p- with \; factorially

small in the number of vertices.

In Chapter [3| we examine how eigenvalue conditions on an undirected
graph may guarantee strong connectedness properties of orientations of that graph.
Namely, we establish mild conditions under which a possibly irregular, sparse graph

’

G has “many” strong orientations. Here, our main results are:

e We show that under an isoperimetric condition and minimum degree require-
ment, a random orientation of GG is strongly connected, with high probability
(Theorem p. [58). We show each condition is insufficient on its own in
guaranteeing the result, and prove the minimum degree condition is tight

(Proposition [16] p. [61)), while the isoperimetric condition is almost tight
(Proposition p. [63).

e We prove a related, but somewhat weaker version of the above theorem,
replacing the isoperimetric condition with a condition on the spectral gap of
the normalized Laplacian (Theorem [17] p. [75).

In Chapter [4 we conclude and explore a series of related, open problems for
each result in this thesis. As partial progress towards Question [I} we compute the

maximum hitting time between vertices in principal ratio extremal graphs (Claim

Bl p- B3



Chapter 2

Extreme values of the stationary
distribution of random walks on

directed graphs

2.1 Introduction

In the first part of this chapter, we study extreme values of the stationary
distribution 7 of a random walk on a directed graph. In particular, we focus on
the principal ratio y(D) of a strongly connected directed graph D, defined as
(D) = et
As we saw in Section [1.3.3] the principal ratio has immediate implications for the
central question of bounding the rate of convergence of a random walk on a directed
graph, where extreme values of the stationary distribution play an important role
in addition to eigenvalues (see Theorem @ Another application of the stationary
distribution and its principal ratio is in the algorithmic design and analysis of ver-
tex ranking, particularly in so-called “PageRank” algorithms for directed graphs
(since many real-world information networks are indeed directed graphs). PageR-
ank algorithms [45] use a variation of random walks with an additional diffusion

parameter and therefore it is not surprising that the effectiveness of the algorithm

depends on the principal ratio. In addition to its role in Page Rank algorithmic

21
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analysis and bounding the rate of converge in random walks, it has been noted (see
[21]) that the principal ratio can be interpreted as a numerical metric for graph
irregularity since it achieves its minimum of 1 for regular graphs.

The study of the principal ratio of the stationary distribution has a rich
history. We note that the stationary distribution is a special case of the Perron
vector ¢, which is the unique positive eigenvector associated with the largest eigen-
value of an irreducible matrix with non-negative entries. There is a large literature
examining the Perron vector of the adjacency matrix of undirected graphs, which
has been studied by Cioaba and Gregory [21], Tait and Tobin [48], Papendieck and
Recht [42], Zhao and Hong [55], and Zhang [54].

For directed graphs, some relevant prior results are from matrix analysis.
Latham [31], Minc [37], and Ostrowski [32] studied the Perron vector of a (not
necessarily symmetric) matrix with positive entries, which can be used to study
matrices associated with complete, weighted directed graphs. However, for our
case, a more relevant prior result comes from Lynn and Timlake, who gave bounds
of the principal ratio for primitive matrices with non-negative entries (see Corollary
2.1.1 in [35]). As we noted earlier, since ergodic random walks on directed graphs
have primitive transition probability matrices, their result applies naturally in our

setting.

Theorem 8 (Lynn, Timlake [35]). If A is an n X n nonnegative matriz satisfying
A* > 0 for some positive integer k and with Perron vector x (i.e. right eigenvector

associated with the largest eigenvalue in modulus), then

max ; _

1<icn b AR —mF e —m)
min z; — mk ’
1<i<n

where m = minay;, k is any integer such that A* >0, r = min >."_ a;;, and )
ai;>0 7 ’ 1<i<n A=Y

15 the largest eigenvalue in absolute value.

This upper bound depends on the matrix A. To get an upper bound for the
principal ratio of a strongly connected, aperiodic directed graph D, we can apply
the above theorem with A = PT| where PT is the transpose of P, the probability

transition matrix of a simple random walk on D. Namely, if we wish to get an
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absolute upper bound for all strongly connected, aperiodic directed graphs, we
take A =1, m = ﬁ, k>n—1, and ﬁ < r < n. We get the following upper

bound
max, ¢(u)

min, ¢(u) = K,

where

K> (n—1)"" (1 - W(T - ﬁ)>

= (14o0(1))(n—1)"""

Another prior bound on the principal ratio of directed graphs was given by
Chung in [I5]. In particular, the aforementioned Proposition [1| gives a bound on
the principal ratio of a strongly connected directed graph that depends on certain
graph parameters. Namely,

v(D) < k%,

where d is the diameter of the graph D and k is the maximum out-degree. Since
d,k < n — 1, this bound also implies absolute upper bound on the principal ratio
of (n — 1)"! over all strongly connected directed graphs on n vertices.

In this chapter, we provide an exact expression for the maximum of the
principal ratio over all strongly connected directed graphs on n vertices. Asymp-

totically, our bound is

2

) = () = (5 +o(0) (0=

Furthermore, we show that this bound is achieved by precisely three directed
graphs, up to isomorphism.

In addition to an extremal analysis of the principal ratio, we also examine
conditions under which the principal ratio can be tightly bounded. Namely, we
show that if a directed graph satisfies a degree condition and a discrepancy condi-
tion, then its principal ratio can be tightly bounded in the sense that it is “close”
to the minimum possible value of 1. Furthermore, we provide counterexamples
that show the principal ratio cannot be tightly bounded if either the discrepancy

condition or degree conditions are removed.
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2.2 A sharp upper bound on the principal ratio

We will prove an upper bound on the principal ratio in terms of n that is

best possible. For n > 3, we define a function
v(n) = max{vy(D) : D is a strongly connected n-vertex directed graph}.

Our main theorem is as follows.

Theorem 9. The mazximum of the principal ratio of the stationary distribution

over all strongly connected directed graphs on n wvertices is asymptotically

y(n) = <§ + 0(1)) (n—1)!.

This theorem is an immediate consequence of the following theorem which

we prove.

Theorem 10. The maximum of the principal ratio of the stationary distribution

over all strongly connected directed graphs on n > 3 vertices is exactly

y(n) = ; <n7—ll + (n—ll)! ;z') (n—1)L

Moreover, ~(n) is attained only by directed graphs Dy, Dy, and D3 defined

as follows: Dy, Dy, and Ds have vertex set {vi,vq,...,v,} and edge set
ED)={(vi,viz1): 1 <i<n—-1)} U{(vj,v;) : 1 <i<j<n—-1}US(D),
where
{(vn,v1)} for D = Dy,
S(D) = {(UH7U2)} fO’r D == D27

{(Un7vl)a(vny'02)} fOTD = D3.
The case for n =5 is illustrated in Figure [2.1].

We note that the extremal graphs D;, Dy, D3 are not only strongly con-
nected, but also aperiodic. Thus, Theorem 1 still holds if one restricts attention to

stationary distributions of ergodic random walks. We also remark that the graphs
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Figure 2.1: The three constructions Dy, Dy, D3 for n = 5.

D; and D, are proper subgraphs of D3. While all three graphs have different
stationary distributions, their principal ratios are nonetheless equal.

The proof of Theorem follows from a sequence of propositions. The
basic idea is as follows: we first show that if the principal ratio of a directed graph
achieves the bound in Theorem [I0] then the graph must necessarily satisfy a set
of properties, which are described in Section [2.2.1] In Sections [2.2.2) and 2.2.3] we

identify families of graphs that satisfy these properties, but nonetheless are not

extremal. Namely, given an arbitrary member from this family, we describe how
one can modify this graph by adding or deleting edges so that its principal ratio
strictly increases. In Section we apply these propositions to show that unless
a given graph is one of three graphs, it can be modified to increase its principal
ratio. Finally, after establishing that all three of these extremal graphs indeed
have the same principal ratio, we finish the proof and we explicitly compute the

stationary distribution of one of these extremal graphs.

2.2.1 The structure of the extremal graphs

We assume all directed graphs D are strongly connected. For two vertices
uw and v, the distance dist(u, v) is the number of edges in a shortest directed path
from u to v. For two subsets Vi, Vs, the directed distance dist(V7,V3) from V] to
V, is defined as min{dist(u,v) : v € Vi and v € V,}. For a directed graph D,

let ¢ be the (left) eigenvector corresponding to the eigenvalue 1 for the transition



26

probability matrix P. We define two subsets of V(D) with respect to ¢ as follows.

Viax = {v € V(D) : max ¢(u) = ¢(v)}.

ueV (D)

Viin = {v € V(D) : min ¢(u) = ¢(v)}.

ueV (D)
We will establish a number of useful facts that relate the ratio of values of

vertices of the Perron vector to the distance between those vertices.

Proposition 2. If vy, vs, ..., v is a path of length k — 1 from vy to vy, then

¢ v k—1
¢Evk§ < gd'*‘(vi).

Proof. From ¢P* = ¢, we obtain

olon) = Y S(2)PF(z,08) = dvn) PH (w1, ).

zeV (D)

By considering the path vy, vs, ..., v, we have

1
d+ (Ul) ’

k—1
Pk<U1,Uk) Z H
i=1

Equivalently, zgz;g < Hf;ll dt(v;).

Proposition 3. If dist(u,v) = k, then

¢(u)
¢(v)

where (n — 1)y =(n—1)-(n—2)---(n— k) is the falling factorial.

< (n—1),

Proof. Let P = {u = vg,v1,...,v, = v} be a shortest path from u to v. For all
0<i<k-—2andj>i+2, wenote that (v;,v;) is not a directed edge. Since D
has no loops, we have d(v;) < n —k+i for all 0 < ¢ < k — 1. The proposition
now follows by applying Proposition [2] O]

Proposition 4. For any directed graph D with n vertices, we have dist(Viax, Vinin) <

n— 2.
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Proof. Suppose dist(Vipax, Vinin) = 7 — 1 = dist(u, v) for some u € V. and v €
Vipin. Let P = vy, v9,...,v, be a shortest directed path of length n — 1 such that
vy = u and v, = v. Since P is a shortest directed path, we note vy is the only

outneighbor of v;. From ¢P = ¢, we obtain

¢(v2) = d(v1) +

Thus ¢(vy) > ¢(v1) and so dist(Viax, Vinin) < dist(ve,v,) < n — 2, which is a

contradiction. O

Proposition 5. For a directed graph D with n vertices, if dist(Vipax, Vinin) < n—3,

then (D) < (n —1)!.

Proof. Let u € Viyax and v € Vi, such that dist(u,v) = dist(Vipax, Vinin). By
Proposition , we have v(D) < (n —1),3 = 2(n — 1)L. O

Proposition 6. Let D be a strongly connected directed graph with vertex set
{v1,...,0,}. Assume vy, vq,...,v, is a shortest directed path from vy to v,. Sup-
pose Vg € Vinax and v, € Vipin. If y(D) > %(n—l)!, then we have NT(vg) = {vy,v3},
N*(vs) = {v1,v0, 04}, and d*(v;) > [2] for4d <i<n—1.

Proof. Since vy, ..., v, is a shortest path from v; to v,, we have d*(v;) < i. To
prove NT(vy) = {v1,v3} and NT(v3) = {v1,v9, 04}, it therefore suffices to show

dt(v2) =2 and d*(v3) = 3. From ¢P = ¢, we have for 1 < j <n—1,

_ B(vy) Pvi) _ dv) _ d(v)
Pog) = d*(v)) +z‘ZJZ+2 () = dw) = G

If d*(ve) = 1, then applying the above bound we have ¢(v,) > %,
yielding the contradiction (D) < £(n—1)!. Similarly, if d*(vs) < 2, or if d* (v;) <
21 for some i where <1< n-— then a ing the above bound yields
1Z] f here 4 1, then applying the above bound yield

YD) < 3(n—1).
[
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Proposition 7. Let D be a strongly connected directed graph with vertexr set
{v1,v9,...,0,}. Assume vy, ..., v, is a shortest directed path from vy to v,, where
Vg € Vinax and v, € Vigin such that dist(Viax, Vinin) = n — 2. If v(D) > %(n -1
then we have (v1,vs), (v9,v1) € E(D) and vq is the only out-neighbor of vy.

Proof. We first show (v, 1) must be an edge. Suppose not. Then v3 will be the
only outneighbor of v5. The equation ¢pP = ¢ gives

P(v3) = Pp(v2) +

Therefore, ¢p(v3) > ¢(v) which yields that vz € Vipax and dist(Vinax, Vinin) < 1 — 3.
By Proposition , we have (D) < 3(n — 1)! which is a contradiction. Therefore,
(vg,v1) is an edge.

Next, we will show N7*(vy) = {ve}. Since we assume vs, ..., v, is a short-
est path from vy to v,, we have N¥(vy) = {vy,v3} and NT(vy) C {vg,vs3,v4}.
Moreover, we have d*(v;) < i for 3 <i <mnas N"(v;) C {v1,...,vi_1} U{vis1}.
Lastly, we note that from ¢P = ¢, we have ¢(v1) > 1é(vs). Assume vy € N*(vy).
Then by considering directed paths vy, v4,...,v, and vg,vs,...,v, and applying

Proposition [2| we have

¢(v2) n ¢(v1)

T dt(vg)...dt(v—q)  dt(vy) - dt(vg)...dT(v,_1)
o(v) o 20(v)

m—1! (n—1),_3  (n—1)V

yielding the contradiction v(D) = 220 < L(n — 1)l So, N*(v1) C {vs,vs}.

(15(”71) - 2
Assume v3 € N7T(vy). Again, by considering directed paths vq,vs,...,v, and
Vg, Vs, . .., v, and applying Proposition [2] we similarly obtain
¢(v2) ¢(v1)
P(vn) >

= T 0) - d (on ) T d (o) - (vs) . d* (o)

P(v9) o(o) 30(vs)
(n—=1! (n—1)2 ~ 2(n-1)"
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yielding the contradiction (D) = f;((zz)) < 2(n— 1)L Thus v3 € N (v;) and since
D is strongly connected, NT(v;) # &. Therefore, N*(v;) = {vy}.

]

2.2.2 Adding edges to increase the principal ratio

Based on Propositions 1-6, we consider the definition of the following family

of graphs. An extremal graph must satisfy (i)-(iv) in the definition below.

Definition 2. For each n, let D,, be a family of directed graphs where each D € D,

on vertex set {vy,...,v,} satisfies the following properties:

(i) The shortest path from vy to vy, is of length n—1 and is denoted by vy, va, . .., V.
(ii) Fori € {2,3},d"(v;) =i.

(iii) For each 4 <i<n—1, we have d™(v;) > |%].

(iv) vy € Vinax, Un € Vinin, and dist(Vipax, Vinin) = dist(ve, v,) = n — 2.

(v) There exist i and j such that (vj,v;) is not an edge where 4 < j <n—1 and
1<i<j—1.

For each D € D,,, we now define an associated graph D™ identical to D

except for the addition of a single edge.

Definition 3. For a given D € D,,, let 4 <t < n denote the smallest integer and
s < t the largest integer such that (vs,vs) is not an edge of D. Define DT as the
directed graph with the same vertex set as D and with edge set E(D) U {(vt, vs)},
as illustrated in Figure 2.2

For a given D € D,,, we wish to compare the principal ratios of D and D™.
In order to do so, we must establish some tools used to compare their stationary
distributions. First, the following proposition provides a useful way to express

entries of the Perron vector as a multiple of a single entry.
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Figure 2.2: D and D*. A dashed edge indicates the absence of that edge.

Proposition 8. Let D be a directed graph whose vertex set is {vy,...,v,}. We
assume vy, ..., v, s a shortest path from vy to v,. If ¢ is the Perron vector of the
transition probability matriz P, then for 1 < i <mn, there exists a function f; such

that

where the the functions f; satisfy

f d+Uk1+Z

i>k+1 )
Vi — Uk

(2.1)

Proof. We proceed by induction. Trivially, f, = 1. Let 1 < k < n — 1. Assume
the proposition holds for all integers ;7 where k < 5 < n. We show the result holds
fori=k—1. As ¢ = ¢ P, we have
(v
(o) = k— 11 n Z ¢

d+ ’Uk
z>k+1
V; — VU

We note if & = n, then we do not have the second term of the equation above.

Applying the induction hypothesis and rearranging the above yields

fior=d () | o= D d+]éi)i) : (2.2)
i
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The upshot of Proposition [§] is that when comparing two graphs D and
D" where V(D) = V(D) = {v1,...,v,} and vy, ..., v, is a shortest directed path

from v; to v, in D and D’, we may write their Perron vectors entrywise as

¢('Uz) = fz : ¢(Un)a
¢(Uz) =4i- ¢(Un)a

for some functions f; and g; satisfying (2.1). The following proposition describes
when f; = g;.

Proposition 9. Let D and D' and their respective Perron vectors be as described
above.
If there is some 1 < s < n—1 such that d} (v;) = df (v;) for each s <i <mn,

then we have f; = g; for each s < i < mn.

This proposition can be proved inductively by using (2.1)) and we skip the
proof here. The next proposition compares f; and g; for the graphs D and D*.

Proposition 10. For each D € D,,, let D* be as defined in Definition[3| Suppose
¢ and 1 are the Perron vectors of the transition probability matrices of D and D+
respectively. Moreover, suppose ¢(v;) = fi - d(vn) and Y(v;) = g; - ¥(vy,) for each
1 <i<n. We have

(a) fi = gi for eacht+1<i<n.

& . d+(vt)+1
(b) ft ZE(Uj) ’

(C) gi—1—fio1 _ gt _ gt—2—fi-2
t—1 df(ve)+1 (t=1)2

Ift > 5, then additionally we have

t—k—Jt— k—2
(d) For each 3 <k <t—2, we have ? (t’“_lj)ck B> dj:r)(g,i)—&-l <1 -3 ;> > 0.

. Gt—k—ft—k gt
(e) For each 3 <k <t — 2, we have e S a5 (ve)+1°

Proof. Since 4 < t < n — 1 is the smallest integer such that an edge (v, vs) is
missing for some 1 < s <t —1, we have d*(v;) =i for each 2 < i <t —1. We also

note dj(v;) = df, (v;) for each 1 < i #t <n and df,(v;) + 1 = d , (v).
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Part (a) follows from Proposition [J] easily. Part (b) can be verified by using
the equation (2.1). If ¢ € {3,4}, then we do not need Part (d) or Part (e). We
can compute Part (c) directly by using the out-degree conditions and the equation
Z1).

For Part (d) and Part (e), we first prove them simultaneously by induction
on k for 3 < k <t—s— 1. We mention here for the case where k =t — s, we
will give the argument separately. If either t = s + 1 or t = s + 2, then we prove
directly for k =t — s and for t — s+ 1 < k <t — 2 the proof is by induction.

The base case is k = 3. From , we have

gt—3 gt 1
9 = —|— ,
Gt—2 P E>t d+

v g9
f
fr—2 = o
j>t
vj Vo
We note d+(' ;= +gj( ) for all j > ¢+ 1. Combining with Part (b), we have
vj D+ Vj
Giog — frg = gi—3 — fi-3 +9t_1 _ft—l.

t—3 t—1
We solve for % and divide both sides of the resulted equation by (¢t — 1),.
Then Part (c) gives the base case of Part (d) and Part (e).
For the inductive step, we assume Part (d) and Part (e) hold for all 3 <

Jj < k —1. As for the base case, from equation ({2.1]), g, satisfies the following

equation:
Gt—k-1
- +
S Z = d+
1<j<k— b >t
ViU g
Similarly,
.ft k—1 ft ] fj
k= T+
e B e T
1<j<k— K j>t
ViU

gt—k—1—ft—k—1

Solving for P

and dividing both sides of the equation by (¢ — 1), we

have
Gt—k—1— fi-k-1 G-k — Ji—k Gt—j — Ji—j

(t=Drpr (=1 S (E=5)0E— 1
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We note g;—; — f;—; > 0 for each 1 < j < k—1 by the inductive hypothesis of Part
(d). Part (e) then follows from the inductive hypothesis of Part (e).
Applying Part (c) as well as the inductive hypothesis for Part (e), we have

Gt—k—1— Ji-k-1 S 4 — i 1
(t—Dps1  — df (vt )+ 1 a=1 g (t = kg1 )
since
— 1 1 (1 P 1 ! )
]:l(t—j)k —it1 (t—k+1)2 t—k+2 (t—k+3) (t—1)p_2
1 > 1
< )3 A

(t—Fk+1) = (t — k+2)7

4 1

<3 (t—k+1)y
we get

Gi—k—1 — fi—k—1 gt 41
> 1— = .
(t = Dgsa dp(v) +1 3= (t—1J)e

We are left to show the expression in Part (d) is positive. We observe

N

-1 t—4
1

A ey A (SASR (TR s

J
here we used the assumption t > 5. We’ve completed the inductive step for Part
(d).

An additional argument is needed for k =t — s since (v, vs) € E(D") and

(v, vs) € E(D). We observe s > 3 since otherwise we do not need this argument.

We have

_ gs—1 9t—j gt 9j
s D D A e ) Dl vet

j>t+1

]—H)s

while
J

1<j<s—t— 1 >t+1

‘7*}’05
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As we did previously in the inductive proof, we have

t—s—2 t—s—1
Gs—1 — fs—l i 4 1 1 1
> -y ——-3 , - .
(= 1De—ssr — dFf(wy) +1 ( 35 (t=J) Z =y (= 1)t—s>

Jj=1

We need only to prove the first inequality of Part (d) for k =t —s. If t — s = 3,
then we prove Part (d) for k& = 3 directly. For ¢t — s > 4, we have

t—s—1

1 1 1
Z (t = J)t—s—jr1 - (t—1)is = (s+1)2 (

J=1

o0

1 1
LGt as 1>t_5_2>

J=0

1 5 1
< (s+ 1), <4_1+ (s+2)(s+3))
4 1
<3 (s+1)y

We used that s > 3 and t — s > 4 to prove the inequalities above. For the range
oft —s+ 1< k <t—2, this can be proved along the same lines as the range of
3<k<t—s. ]

Using Proposition [10} we can now compare (D) and (D).

Proposition 11. For each D € D, let DT be defined as in Definition [ Then
1(DT) > (D).

Proof. Since the Perron vector has positive entries, rescaling it by a positive num-

ber will not change the principal ratio. Thus we are able to assume 9 satisfies

P(v2) = Y(vy).

To prove the claim, it is enough to show ¢(v,) > 1(v,). Suppose not, i.e., ¢(v,) <
CHE

Recall Proposition . If t = 3 then we have gy > f5 as Part (a), Proposition
. For t = 4, we have go > f, as Part (b), Proposition Since we assumed
¢(vn) < Y(vy), we have Y(v2) = g2 - ¢(va) > B(v2) = fo - ¢(vn), which is a
contradiction. If ¢ > 5, then we apply Part (d) of Proposition 10| with & = ¢ — 2
and get go > fo. In the case of t = 5, we still have the same inequality. Therefore,

we can find the same contradiction as the case of ¢t = 4. OJ
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Figure 2.3: D and D~. A dashed edge indicates the absence of that edge.

2.2.3 Deleting edges to increase the principal ratio

We now consider another family of graphs D!, disjoint from D,,, which

satisfy the properties necessary for extremality in Section [2.2.1]

Definition 4. For each n, let D), be a family of directed graphs where each D € D),

on vertex set {vy,...,v,} satisfies the following properties:

(i) The shortest path from vy to v, is of lengthn—1 and is denoted by vy, va, ..., v,.
(ii) For each 2 <i<n-—1,d"(v;) =1i.

(1i1) v2 € Vinax, Un € Vinin, and dist(Vipax, Vinin) = dist(vg, v,) = n — 2.

(iv) d*(v,) > 2.

(v) N7 (vn) # {1, v2}.

For each D € D/, we now define an associated graph D~ identical to D

except for the deletion of a single edge.

Definition 5. For each D € D), let 3 <t < n—1 be the largest integer such that
(Un,v) € E(D). We define D~ as the directed graph whose edge set is E(D) \
{(vn,v¢)}, as illustrated in Figure[2.3|

For a graph in D/, we consider the following algorithm.
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Analogous to how Proposition 10| allowed us to compare the principal ratios

of D and D™, the following proposition will allow us to compare the principal ratios

of D and D—.

Proposition 12. For each D € D!, let D~ be defined as in Definition @ Assume
¢ and 1) are the Perron vectors of the transition probability matrices of D and D~
respectively. Moreover, suppose ¢(v;) = fi - d(vn) and ¥(v;) = g; - ¥(vy,) for each
1 <i<n. We have

(a) fi=g;i fort <i<mn.

(b) gtfi:{tfl _ 1

~dp(on)’

1 . 1 gt—2—ft—2
(C) 0< —d;wn) <1 (t_1)(d;(vn)—1)> = (t—1)2 < dh(vn)”

Ift > 5, then additionally we have
(d) For3 <k <t—2, we have
gt—k—ft—k 1 4 k-2 1 1 E-1 1
e 2 dhen) (1 T2 T T o)L 2=l (t—1>j> > 0.

(e) For3 <k <t—2, we have gizt’“__li"“ < dJB(lvn).

Proof. We observe dj,(v;) = dj,_(v;) =i for each 1 <i <n—1and dj(v,) — 1 =
d;(v,). Also, f, = g, = 1. Part (a) is a simple consequence of Proposition @ We
can verify Part (b) and Part (c) directly. We note when we check Part (c), there
are two cases depending on whether (v,,v;_;) is an edge or not. If ¢t € {3,4}, then
we do not need Part (d) or Part (e). Thus we assume ¢ > 5. We will prove Part
(d) and Part (e) simultaneously using induction.

The base case is £k = 3. We have two cases.
Case 1: (v,,v—3) € E(D).

Using the equation ({2.1]), we have

gt-3 gi—1 1 g;
Jt—2 = + + + . (2.3)
t—3 t—1 dh(v,)—1 tg§1 5 (vn)

vj U3
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Similarly,
fies | i 1
_ E 2.4
e o) (24)
t<j<n— 1
]—M)t 3

Subtracting f; o from g; o, rearranging terms followed by dividing both sides by

(t — 1)3, we have

(t—1)5  (t—1) t—1)(t—1)y  df(vn)(df(va) —1)(E— 1)y
Applying Part (a) to Part (c), we have

gi-3 — fi-3 1 1 1 1 1
> 1— — > 0.
e e (e de T e e
The above quantity is clearly positive since ¢ > 5. Therefore, we obtained the base

case for Part (d). From ({2.5)), if we apply Part (b) and Part (c) as well as t > 5,

then we get gtzf__l];??’ < oF (lv 7, which is the base case for Part (e).

Gt—3 — fi—3 _ Ot—2 — fi—2 Gr—1 — fi-1 1 (2.5>

Case 2: (v,,vi—3) & E(D).
. 1 . . .

If (vp,v;-3) is not an edge, then T 1S missing from and ——— ( 3
is missing in (2.4). However, (2.5)) still holds in this case. We can prove the base
case for Part (d) and Part (e) similarly.

For the inductive step, we assume Part (d) and Part (e) are true for all
3 < i < k. We first deal with the case where (v,,v;_) is an edge. Again, from
equation (2.1)) we have

Jt—k—1 Gt— ] 1 gj
_ . 2.6
ey T Z d+(vn) i Z d5(v)) (2:6)

1<j<k— 1

Similarly, for f;_j, we have

frr = ]:”” DI f” ! Z ). (2.7)
D j<n

1<j<k— 1 "

We solve for gt"“t‘ilﬁ# and then divide both sides of the equation by (t — 1).
We get

k—1
Je—k—1 — Jr-k—1 _ 9= k= Ji- ko g—j — Ji—j _ 1

(t — 1)k (=D FE=DE=Dr  dplon)(dp(va) =)t =i
(2.8)
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By the inductive hypothesis for Part (d) and Part (e), we get % <

gt (tk 1’? 2 < ( , which proves the inductive step for Part (e).

From the inductive hypothesis of Part (d), we get

k—2 k—1
Gi—k — Ji—k 4 1 1
> — . (2.9)
(t — 1)k d; < jzz; t_ 2 dB(”n) —1 =1 (t - 1)])

From the inductive hypothesis for Part (e), we have

g — S o9~ e 1 _ 1 1
J=1 t_ 1)k j=1 (t o 1)j (t _j)k*jJrl N d+(vn) j=1 (t j)k*]‘l’l
(2.10)
Putting and - together, we get
Jt—k—1 — ft—k—l > 1 (1 4 k—2 1 k—1 1
(-~ dplo)\ 3% ) &t~ Dam
k
1 1 )
T 12 1)

By the same lines as the proof of Proposition , we can show > "~

4, 1
3" (t—ktD)s"

k— k
Gt—k—1 — fi—k—1 > 1 (1 _é ! 1 _ 1 Z 1 ) .

Therefore, we proved

(t = Dt d(vn) 3 (t—=j)2  dp(va) =14+ (t=1)
We note
45 1 i1<41_1 1 1
3j:1(t—j)2 d*(v,) — 1 (t—1); ~3\3 t—-1 t—1=2
3
< = — <1
073

Here we applied facts t — k > 3 and ¢ > 5. Thus, that the expression in Part (d)
is positive follows from the inequality above. We established the inductive step of
Part (d) in the case where (v, v;_x) is an edge For the case where (v, v4_) is not
an edge, we note Wln)_l is missing from and - +( is missing from ([2.7]).

The argument goes along the same lines. O]

Using Proposition , we can now compare (D) and (D).
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Proposition 13. For each D € D.,, let D~ be defined as Definition @ We have
(D7) >~(D).

Proof. We use the same idea as the proof for Proposition [I1 We rescale ¢ such
that ¢(ve) = 1(v9) and show ¥ (v,,) < ¢(v,). Suppose ¥(v,) > ¢(v,). We will show
g2 > fo which will yield ¢ (ve) > ¢(vy) since 1(va) = go-1(v,,) and ¢(ve) = fa-d(vy,)
as well as the assumption ¢ (v,) > ¢(v,,). If t € {3,4}, then go > f follows either
from Part (b) or Part (c¢) of Proposition [12] If ¢ > 5, then we will apply Part
(d) of Proposition [12) with k = ¢ — 2 to get g» > fo. We draw the contradiction

similarly. O

2.2.4 Proof of Theorem [0
We can now prove Theorem [I0] as a consequence of Propositions [2] 13|

Proof of Theorem [10}. We will show that the extremal graphs achieving the maxi-
mum of the principal ratio over all strongly connected n-vertex graphs are precisely
D+, Dy, and D3 and that their principal ratio is indeed as claimed in Theorem [10]

We will use the fact that D; has principal ratio as follows, which we will

prove at the end of this section:

¥(Dy) = % (nﬁl + (nil)! ;w) (n— 1)L

Assume D is extremal, i.e. its principal ratio is at least as large as that

of any directed graph on n vertices. For any (strongly connected) directed graph D,
we have dist(Viax, Vinin) < n—2 by Proposition . If D is such that dist(Viax, Vinin) <
n — 3, then D is not extremal since by Proposition [ we have (D) < v(Dy). So
dist(Vinax, Vinin) = 17— 2, where vy € Vijax, Un € Vigin, and v, vs, . . ., v, is a shortest
path from vy to v,. If D is extremal, then v(D) > v(D;) > 2(n — 1)l So, ap-
plying Proposition [7] and Proposition [6, we can assume further that vy, va,. .., v,
is a shortest path from vy to v,, d*(v;) =i for i € {2,3}, and d*(v;) > | %] for
4 <q3<n.

Now, if D € D, then D is not extremal by Proposition 10. Similarly, if
D € D), D is not extremal by Proposition 12.



40

Therefore, D ¢ D,, and D ¢ D). Since D ¢ D,, but satisfies all properties
for inclusion in D,, except (v) in Definition [2] it must be that d*(v;) =i for each
2 <i<n—1. Then, since D ¢ D, but satisfies all properties for inclusion in D,
except either (iv) or (v) in Definition {4} either d*(v,) = 1 or Nt (v,) = {v1,v2}.
In the former case, if N*(v,) = {v;} for j > 3, then arguing along the same lines
as in the proof of Proposition [13| one has (D) < v(D,); otherwise D = Dy or
D = D,. In the latter case, D = Dj.

Lastly, we show that D, Dy, and D3 all have the same principal ratio.
Assume ¢, 1, T are the Perron vectors of Dy, Dy, and D3 respectively. Scale their
Perron vectors so that all three agree on the nth coordinate. By Proposition [§] we

know there exist (positive) functions f;, g;, h; so that

By Proposition [9] we note f; = g; = h; for 2 <i < n. We can prove the following

inequalities for f;.

(@) Bt = oy = fu

(b) Foreach3§kﬁt—Q,wehavefn<1—%Z?;f( 1 >< Jock < f

n—j)2 ) — (n=1)
The proof of Part (a) and Part (b) uses the same argument as the proof of Proposi-
tionand it is omitted here. If n < 5, then we can verify max{f; : 1 <i <n} = f,
and min{f; : 1 < i < n} = f, directly. Suppose n > 6. By Part (b), for each
3<k<n-—2we have

fnfk - fnkarl _ fnfk . fnfk+1
(n— 1)k (n—l)k (n— 1)k,1(n—k)
fn—k’ fn

“n—=1), n—k

S 1 4 1
_fn( _3(n—k+2)_n—k)
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L1\ _f
>fn<1—§‘§)—€'

We note n — k > 2. We can check f; > f, easily. Therefore, we obtain max{f; :
1<i<n}=frandmin{f;: 1 <i<n}=f,.

The same holds for g, and hs, which completes the proof. n
We now compute the stationary distribution and principal ratio of Dy, com-

pleting the proof of Theorem [10}

Claim A. Let Dy be as defined in the statement of Theorem [10}, and let ¢ be the

Perron vector associated with the transition probability matriz P of Dy. Then

where

Proof. Since we are concerned with the ratio of the maximum entry and the mini-
mum entry of the Perron vector, rescaling the Perron vector by a positive number
will not affect our result. We assume = = (1,9, ...,x,) with z, = 1 such that

P = x, where

0 1 0 0 0
1/2 0 1/2 0 0
1/3 1/3 0 0 0

P={1/4 1/4 1/4 0 0
1 0 0 -0 0|

Suppose P = (p1,p2, .. .,pn) Where p; is the i-th column of P for each 1 < ¢ < n.

From x1 =z - p; and x5 = x - ps, we have

4 2
— . _Z 2.11
T 3951 1 ( )
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where we used the assumption x, = 1. As x3 = x - p3 and 1 = x - p;, we have

3 3
For each 2 < k <n — 1, we define
2k
a =
T k+ Dk -1
k—2
k
b, = 1N
T T Dk - D) ;Z
For each 2 < k <n — 1, we will show
T — Qply — bk (213)

We will prove (2.13) by induction on k. The cases k = 2 and k = 3 are given by
(2.11)) and (2.12)) respectively. Assume (2.13)) is true up to [ for some 3 <1 < n—2.

Using ;11 = 2 - pj11 and ;-1 = x - p;_1, we have

= a;171 — by

The inductive hypothesis and an elementary computation gives:

l—l—l aj_o
a = — | Q-1 —
I+1 l+2 -1 9

AR (2(l1l) 2(z—2))

Tl+2\Ul-2)0 (-1
C20+1)

(20
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We have completed the proof of (2.13)). Since z,, = z - p,, we have

Tn-1

Ty =

L (2.14)

Recall the assumption z,, = 1. Using ([2.13|) with £ = n — 1 and solving for x; in

(2.14]), we obtain
n—3

—2) 1
xlz%ﬁﬁz@'!,

=0

We already have an explicit expression for entries of x. We claim
Tog > T1 >T3>Tyg > "> Tp-1 > Ty

We can verify o > 1 > 3 and x,_1 > =z, directly. To prove the remaining
inequalities, for each 3 < k <n — 2, (2.13) yields

k—2

ok k
- - 1 2.1
T De— T kr 1) k—1)!;“ (2.15)
2k + 1) (k+1) <=
_ i, 2.1
T T (e 2) k'z (2.16)

We first multiply (2.16) by a factor —k(k(ff)i) and add the resulting equation to
(2.15). We get the following equation

k*(k + 2) k

T =

(k412 " 7 k1

The equation above implies x; > xpyq for each 3 < k < n — 2. We have finished

Ty —

the proof of the claim. As the Perron vector ¢ is a positive multiplier of x, we have

min ¢(v;) = ¢(v,) and max ¢(v;) = P(vy).

1<i<n 1<i<n
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Finally, we are able to compute

B(v2) _ T2
o(vn)  Tn
n(n—2)! 2¢3 . 2
= 7 1 _ | — —
3 3 2;2 3
2( n 1 X2
— - ! — 1)l
S(n—l—i_(n—l)!;Z)(n )
This completes the proof of Theorem [I0] O

2.3 A sufficient condition for a tightly bounded
principal ratio

So far, we have shown that the maximum of the principal ratio over all
strongly connected n-vertex directed graphs is (2/3 + o(1))(n — 1)!. On the other
hand, the minimum of the principal ratio is 1 and is achieved by regular directed
graphs. In this section, we examine conditions under which the principal ratio is
“close” to the minimum of 1.

An important tool in our analysis will be the aforementioned notion of
circulation, as defined by Chung [I5]. Recall that for a directed graph D, a function
F: E(D) — RTU{0} that assigns to each directed edge (u,v) a nonnegative value
F(u,v). F is said to be a circulation if at each vertex v, we have

Z F(u,v) = Z F(v,w).
uu€N—(v) wweNT(v)
For a circulation F' and a directed edge e = (u,v), we will write F(e) for F(u,v)
in some occasions. If ¢ is the Perron vector of the transition probability matrix P,

then we can associate a circulation Fy to ¢, where
o)
d*(v)

In particular, we recall that the circulation F; has the following property: at each

Fy(v,w)

vertex v, we have

> Fyuwv)=¢()= Y Fyv,w). (2.17)

wueN~(v) wweNT(v)
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We will repeatedly use (2.17)) in the proof of the following theorem.

Theorem 11. Let D = (V, E) be a strongly connected directed graph and ¢ be the
Perron vector of the transition probability matrix P. If there are positive constants

a,b,c,d,e such that
(i) (a—e)n <d"(v),d (v) < (a+€)n for allv € V(D) and

(i) |E(S,T)| > b|S||T| for all disjoint subsets S and T with |S| > cn and |T'| >
dn,

then we have
1 b(a — 5¢)(a — €)

D) < C Jor € = 4(a + )

2.3.1 Discussion of conditions

Before proceeding with the proof of Theorem [T1], we illustrate that neither
the degree condition (i), nor the discrepancy condition (ii) alone guarantee a small
principal ratio. We first give a construction which satisfies the degree requirement

but fails the discrepancy condition and has principal ratio linear in n.

Example 4. Construct a directed graph D on 2n + 1 vertices as follows: take two
copies of D,,, the complete directed graph on n vertices, as well as an isolated vertex
b. Add an edge from each vertex in the first copy of D,, to b and an edge from b to
each vertex in the second copy of D,. Finally, select a distinguished vertex from
the first copy of D,,, which we denote e, and a distinguished vertex from the second
copy of D, which we denote d, and add edge (d,e). Let A denote the induced
subgraph of the first copy of D,, obtained by deleting vertex e; similarly, C' is the
induced subgraph obtained by deleting vertex d from the second copy of D,. See
Figure for an illustration.

Proposition 14. The construction D in Example [ satisfies the degree condition

of Theorem but not the discrepancy condition. The (unscaled) Perron vector of
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Figure 2.4: The construction in Example .

D s given by

Consequently, v(D) = 2ol _ 4 1

miny p(u)
Proof. Observe that, for all a € V(A), df = df = dj = df = n, and, for
all ¢ € V(C), df = n — 1, thus D satisfies the degree condition in Theorem
[11] However, D fails the discrepancy condition since E(V(A),V(C)) = 0 where
[V(A)| = |V(C)| = n— 1. To compute the Perron vector of D, first observe that
since A and C' are vertex-transitive, ¢p(u) = ¢(a) for all u,a € V(A) and similarly
o(u) = ¢(c) for all u,c € V(C). Consider a € V(A). From ¢ = ¢P, we obtain

dla)= > ¢(u)P(u,a)

ueEN~(a)

= Y éwPua)+ Y. é(u)P(u.a)
uEN—(a)\V(A) u€V(A)

(e P(a)

“lar e

-2+ 6

In the same way as above, we also obtain equations for vertices b, d, e and
ceC:
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¢(c) = — Tz 1¢(C) t=
o) = 2 o),
o) =" Loa) + A2

We may set ¢(a) = 1 and solve the above equations, yielding the result. [

Next, we give a construction to illustrate the discrepancy condition alone

is insufficient to guarantee a small principal ratio.

Example 5. Construct a directed graph D on n + \/n vertices as follows: first,
construct the following graph from [15] on \/n vertices, which we denote H ;. To
construct H s, take the union of a directed cycle C s, consisting of edges (vj,vji1)
(where indices are taken modulo \/n), and edges (v;,v1) for j = 1,...,y/n — 1.
Then, take a copy of D,,, the complete directed graph on n vertices, and select from

it a distinguished vertexr uw. Add edges (vi,u) and (u,v,). See Figure for an

illustration.

Figure 2.5: The construction in Example .

It is easy to check D as defined in Example [5| satisfies the discrepancy
condition in Theorem , but not the degree requirement (note dv*ﬁ = 1 and
df = n). As noted in [I5], the graph H 5 has principal ratio 2v"~!. Thus,
V(D) = y(H z) =2V

2.3.2 Proof of Theorem 11l

Having shown that each condition in Theorem [11] taken on its own is in-
sufficient in ensuring a small principal ratio, we now prove that together they do

provide a sufficient condition.
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Proof of Theorem[11. We assume

max ¢(v) = ¢(u) and min ¢(v) = o(w).

veD(V) veD(V)

We will show ¢(w) > C - ¢(u) instead, where C' is the constant in the statement
of the theorem. We use U to denote the set {v € N~ (u) : ¢(v) < @}

w € N~ (u) \ U, then we have nothing to show. Thus we assume w ¢ N~ (u) \ U.
We consider the circulation F associated with ¢ and recall . By the definition

of U, we have

Z Fy(v,u) ZF¢(U,U) + Z Fy(v,u)

vEN~ (u) velU vEN— (u)\U
- Z (a — e)n * Z (a¢—(ue))n
vEU vEN ™
Ulg(w) ((a+€)n— |U|)¢(U)
~ 2(a—¢€)n (a—e)n '

Solving the inequality above, we have |U| < 4en. Let U' = N~ (u) \ U. Then we
have |U'| > (a — 5¢e)n from the assumption [N~ (u)| > (a — e)n. If IN“(w)NU’'| >

U/
%, then we have

dw)= Y Fylv,w)

vEN~(w)

> Z Fy(v,w)

vEN~ (w)NU’

¢(u)
= Z 2(a+€)n

veEN~ (w)NU’
 (a=596()
~ 4(a+e)

> C- ¢(u).

Therefore, we assume [N~ (w)NU'| < ‘%' for the remainder of the proof. We define
U”" =U"\ N~ (w) and we have |U"| > (“_%)” The assumption |E(S,T)| > b|S||T|
for any disjoint S and 7" implies

b(a — 5¢)(a — e)nQ.
2

[EU", N™(w))] > b|U"[[N™ (w)] = (2.18)
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Set @1 = >y @) and Ey = E(U",N~(w)). Using (2.17), we have the
following inequality

Z Z F¢ Z,0) Z Fy(e) > Z % > C(a+ e)ng(u),

vEN~(w) zEN— ecFy ecFy

(2.19)
where we used inequality (2.18)) in the last step. By the definition of the circulation

Fy4, we have

Z F¢vw_ 3 (qb(v) -5 (2.20)

e N C +en  (a+e€)n

The combination of inequalities (2.19)) and (2.20) now completes the proof. ]

2.4 Bounds on the first non-trivial eigenvalue, )\,

In this section, we focus on the first non-trivial eigenvalue of the normalized
Laplacian. As we saw in Theorems [0] and [5] this eigenvalue \; is a key parameter
in bounding the rate of convergence of random walks on directed graphs and in
capturing isoperimetric properties of the directed graph. In the undirected case,
it is well-known that A\; and the diameter of the graph G are intimately related.
Specifically, one can derive lower bounds on A; in terms of the diameter of the
graph and, conversely, derive upper bounds on the diameter in terms of A;. As an

example of the former, consider the following bound from [14]:

Theorem 12 ([14]). For a connected graph G with diameter D and normalized
Laplacian eigenvalues 0 = Ag < Ay < --- < \,_1, we have
A2 %1((;)

For more specialized classes of graphs (e.g. for vertex-transitive and edge-
transitive graphs), one can derive tighter bounds by applying lower bounds on
the Cheeger constant with the Cheeger inequality (see [14, Theorems 7.5-7.7]);
however, the above bound is asymptotically sharp up to a constant in general.
Additionally, Chung proved the following upper bound on graph diameter in terms
of ;.
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Theorem 13 (Chung [14, 19]). For a connected graph G on n vertices with di-

ameter D and normalized Laplacian eigenvalues 0 = Mg < A\p < --- < \,_q, we
have
1 -1
D< {W_H)J ‘o
1 g)\n 1 )\1

In the directed case, Chung established a result similar to Theorem [I3]

Theorem 14 (Chung [15]). For a strongly connected directed graph G on n vertices
with diameter D, normalized Laplacian eigenvalues 0 = N\g < Ay < --- < A\yq,
and Perron vector ¢ of the probability transition matrix of a random walk on G,

we have

< {Qmaxu log(21/¢(u))J o
log o
In this section, we prove a lower bound for \; for a strongly connected
directed graph, which can be thought of as the directed analog to Theorem [12]
We also investigate the sharpness of this bound by constructing an example with

small A\;. Our lower bound is as follows:

Theorem 15. For a strongly connected directed graph G on n vertices with diam-
eter D, normalized Laplacian eigenvalues 0 = N\g < Ay < -+ < \,_1, and Perron
vector ¢ of the probability transition matriz of a random walk on G, we have

min, ¢(u)

A > 2D - max, dt(u)’

2.4.1 Proof of Theorem [15|

Before proceeding with the proof of Theorem [15], we establish the following

useful fact.

Fact 1. Let f € C" and g € (R™)™ such that )", f(u)g(u) = 0. Then, for every u
there exists v such that |f(u) — f(v)| > |f(u)].

Proof. For each j = 1,...,n, let z(j) = [Re(f(j)),Im(f(j))] and - denote vec-
tor dot product. For any u, the equation ) f(u)g(u) = 0 yields 0 = z(u) -

>o2()g(d) = le(w)Pglu) + 3,2, w(w) - 2(j)g(j), from which it is clear that
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there must exist some v # w such that z(u) - x(v)g(v) < 0 = z(u) - z(v) <
0 = cosf < 0, where 6 denotes the angle between vectors z(u) and z(v).
Now, squaring both sides of |f(u) — f(v)| > |f(u)| and rewriting using the

fact that |z|? = 2z, we have

where in the last step we used Euler’s formula and 6 denotes the angle between
z(u) and z(v). Since |f(v)|* — 2|f(u)||f(v)]cosf > 0 holds when cos(f) < 0, the
claimed inequality holds. O]

Using the above fact, we now prove Theorem [15]

Proof of Theorem[15. Let ¢ denote the Perron vector (scaled so its entries sum to
1) of the probability transition matrix P of G. Then, from [16], we have

ST 1f(w) = F)Pe(u)Pu,v)
A= nf . (2.21)
> ffigéu):o 2 Z |f(U)|2¢(U)

Let f be the harmonic eigenvector achieving A; in Equation (2.21)). Let ug
denote a vertex with |f(ug)| = max, |f(u)|. From Fact [} there must exist vy such

that | f(uo) — f(vo)|? > |f(uo)>. Let S denote the shortest directed path from wuq

to vg. By Cauchy-Schwarz, we have:

2

[f(uo) = fwo)* = | D (f(w) = f(v)-1| <D- Y [f(u)— f(v)*.
(u,w)eS

(u,w)eS

Applying this fact, we obtain
D 1f(w) = F@)Pé(u)Plu,v)
A\ = uU—v
2> |f(v)Po(v)
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> (u,v)eS
B 2 |JC(UO)|2
S 1) — £
min,, ¢(u) (up)es
~ 2-max, d*(u) | f(uo)?
min, ¢(u) 5 - |f(uo) — f(wo)[?
~ 2 max, d*(u) | f(uo)|?
min,, ¢(u)

~ 3D max, dt(u)
[

As an immediate consequence of this theorem, we can apply our previous
upper bound the principal ratio to get an absolute lower bound on A; in terms of

n, the number of vertices.

Corollary 1. For a strongly connected n-vertex directed graph G with normalized
Laplacian eigenvalues 0 = g < A\; < --- < \,,_1, we have

1
(5+0(1) (n—1)3- (n—1)!
Proof. Apply the bound on the principal ratio in Theorem |10 with max, ¢(u) >
%}fl&(u) to obtain a lower bound on min, ¢(u); then apply this to Theorem

with D, max, d*(u) <n— 1. O

AL >

To compare the above corollary with the undirected case, we can derive a
corollary from Theorem [13|in a similar way. Namely, taking diameter D =n — 1
and vol(G) = 2 (3), we obtain

1
AN > —
"S- 1)

for undirected graphs.

2.4.2 A construction with small second eigenvalue

To examine the sharpness of the bound in Theorem and subsequent

Corollary , we give a construction on n vertices with A\; < f(n), where

2
S~ ey E
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G

0=105°05°05°0
o OSOS0=0

Figure 2.6: Constructions G and G’ in Example @ for N = 5.

We describe the construction below. This construction utilizes the principal
ratio extremal graph from Theorem (10| by (loosely speaking) appending a reflected
copy of this graph to itself.

Example 6. Let G have vertex set {vq,...,vx} and edge set given by
EG)={(vi,vi+1) : 1 <i < N -1} U{(vj,v;) : 1 <i<j<N—-1}U(vn,v1).

We define a graph G' on vertex set {vi,...,Vy,Vyn,1,---, U5y} thal consists of a
copy of G on {v},..., vy} connected to a “reflected” copy of G on {Vy,q, ..., Voy}

by edges (Viy, Uy, 1) and (Vy,,,Vy). More precisely,
E(G') = {(v;,v) : (vi,v5) € B(G)} U{(vhn iy, van—jua) = (v}, 05) € E(G)} U
{(UE\H U?\H—l)a (U§V+1> U?V)}
An illustration for N =5 is shown in Figure [2.6]

We first make some useful observations about the Perron vector of G’ and

G which will be helpful in proving an upper bound for A\; for G'.

Lemma 2. Let ¢ and ¢ denote the Perron vectors of graphs G' and G described
in Example [l Then dcr(vn) < ¢c(vn) and ¢g(vn) ~ der(vn).

Proof. Let P and P’ denote the probability transition matrices of G and G’ re-

spectively. Furthermore, let x = (1,29, ..., 2y) and 2/ = (2], 25, ..., 2y) be such
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that tP =z and 2’P' = 2/. For i =2,..., N — 1, we have identical equations for

x; and 2}, namely

/

€T -

/ J

X, = E ,
<5<

i—1<j<N—1 J

For i =1, N we have

2<j<N-1
o
T = Z — + TN,
2<j<N-1
. 295’]\[717
N-—-1
IN = N1 .
N -1

Substituting the above expressions for '’y and xy into the equations for z

and z respectively yields the identical equations
/
7

/I xz; xlN—l
=2 GtNoT

2<j<N-1
T TN-1
€Tr1 = e .
! Z i TN
2<j<N-1
Hence 2 = z; for i = 1,...,N — 1 and thus 2y = 2zx. Furthermore, by the
symmetry of G’, it is clear that for ¢ = 1,..., N, we have x] = x4y_, , and thus

SN = Z?iVNH ;. Putting these facts together

X 2r N TN
¢G/ Ul — N = — — ,
B VPSS ST
xN CCN
¢G(UN) = = = ,
YT Y @ty
from which we obtain ¢g/(vy) < ¢g(vy). Furthermore, as ¢g(vy) = %

where ¢g(vy_1) < 1, it is clear that A}im ¢c(vy) = 0. And the above expressions
— 00
for ¢cr(vn) and ég(vy) imply
¢c(vy)

da(on) +1= m,
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from which we can see that ¢g(vy) ~ dor(Vly). O

Next, we obtain the asymptotic behavior of the minimal coordinate of the

Perron of G in Example [0

Lemma 3. Let G be as described in Example[6. Then

1
¢G(UN) ~ (e _ 1) . (N— 1)|
Proof. In [1], it was shown that
1
¢c(vn) = —.
1+Zk 1 k+1 Zz 1 U
We claim N1
lim kl(kz-&-l'szlZ _ 1
N—oo (e—1)- (N —1)! '
Note that
—e—1. 2.22
2. CEE (2:22)

k=1

Reversing the order of summation, we can rewrite

N-Lo o - =2 il o N-1 o
;(k; 'Zl_( ) <<N_1>!Z(k+1)!)’

i=k—1 =0 k=

where by Equation (2.22), the second term above is asymptotic to (e—1)- (N —1)!.

Thus, all that remains to be shown is that

N-2 il o N-2
1l 1l
OZ';(mm ;"
1. 1= = < 1 1=
Nooe (e — 1) (N — 1) = Nooo (N — 1)
é(N_Q)l
< lim 3 =

where, in the last step, we used the fact that Z 0 2il < 2(N — 2)! holds for

N > 3. U

Using the preceding lemmas, we now prove an upper bound on A; for the
construction G’ described in Example [} Our main tool will be Theorem [5], the

directed Cheeger inequality proved by Chung in [15].
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Claim 1. Let directed graphs G and G' be as described in Evample|6l Then

2
(e—1)- (N -1

/\1(G/) < 2¢G(UN) ~

where M\ (G") denotes the first non-trivial eigenvalue of the normalized Laplacian

of G' and ¢¢(vn) denotes the value of the Perron vector of G on vertex vy.

Proof. Taking S = {v],..., vy}, we have that the Cheeger constant h(G’) of G’
satisfies
Fy(0S)
min{Fy(S), Fy(S)}
_ e (vn)/2
- Xilida(v)
= ¢ar (Vi)

< ¢g(vn),

hG') <

where, in the last step, we applied Lemma [2| and in the second-to-last step, we
applied the fact that ¢¢/(v]) = ¢ar(vyy_;1q) for i =1,..., N. Applying the upper
bound of the Cheeger inequality (Theorem [5)) and Lemma [3| yields the result.

O
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Chapter 3

Graphs with many strong

orientations

3.1 Introduction

In this chapter, we answer a question posed by Fan Chung related to count-
ing strong orientations: for which possibly sparse and irregular graphs are “most”
orientations strongly connected? More precisely, for any given € > 0, we wish to
establish minimally restrictive conditions on G so that, with probability 1 — €, a
random orientation of G is strongly connected, provided the number of vertices n
is sufficiently large.

In particular, we show that if a general graph G satisfies a mild eigen-
value condition and mild minimum degree requirement, then a random orientation
will be strongly connected with high probability. In fact, we actually prove two
main theorems: a “weak” and “strong” version. Both theorems contain an iden-
tical minimum degree requirement, but the strong version stipulates a bound on
the Cheeger constant (and hence, via the Cheeger inequality, the first nontrivial
eigenvalue of the normalized Laplacian, \;), whereas the weak form replaces this
with a more restrictive condition on the spectral gap of the normalized Laplacian,
o =max {1l — A, \,—1 — 1}. Nonetheless, as the methods used to prove each result

are completely different, we include both theorems here.

o7
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3.2 Main theorem: strong form

We begin with the stronger form of our main theorem:

Theorem 16. Given any o > 0 and & > 4, there exists an integer Ny = No(a, §)
such that for n > Ny, if G is an n-vertex graph with minimum degree 6(G) > (1+

log, 1
a)logyn and Cheeger constant ®(G) > & - w, then a random orientation
g2
1+4al
of G is strongly connected with probability at least 1 — w.
an®logsn

Thus, a graph G satisfying the conditions of Theorem |16/ has (1 —o0(1))2¢(¢)
many strong orientations, where e(G) denotes the number of edges of G. We remind
the reader that the Cheeger constant of a graph measures the fewest number of
edges leaving a vertex set relative to the “size” of that set. Beyond the bound on
the Cheeger constant and the minimum degree requirement, we do not assume the
graph necessarily satisfies additional structural properties; in particular, the graph
is not assumed to be regular. Not assuming regularity increases the utility of the
result, but introduces additional subtleties in the proof, particularly with regard
to enumerating connected k sets of the graph.

As we will show in Section [3.2.1] the minimum degree requirement is tight
while the bound on the Cheeger constant is tight up to a log, log, n factor. Since
the normalized Laplacian eigenvalues of a general graph can be more efficiently
computed than its Cheeger constant, it may be useful to reformulate the second

condition in Theorem [16| as a spectral condition via the Cheeger inequality.

Corollary 2. In Theorem the condition ®(G) > & - 2821821 14y e replaced

logy
with
log, log, n

M(G)
2 > & log, n

where A (G) denotes the second eigenvalue of the normalized Laplacian of G.

Here, we emphasize that the spectral condition in Corollary [2f only pertains
to the second eigenvalue and thus makes no additional assumptions about the
spectral gap, 0 = max;>1 |1 — A;|, which is the key parameter in controlling the

discrepancy of a graph. Thus, while we assume a bound on |1 — \;|, we do not
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assume an additional bound on the other end of the spectrum, |1 — A, 1|, beyond
the trivial bound that holds for any graph, \,_; < 2.

A consequence of the Cheeger inequality, by which Corollary [2| follows im-
mediately from Theorem , is that for any set X C V(G) with vol(X) < 1vol(G),

(X, X) > %VOI(X). (3.1)

As an aside, this uses only the bound 2® > );, so we are not using the full
strength of Cheeger’s inequality. Indeed, on graphs the lower bound \; < 2 is
easily proven (for instance, see Lemma 2.1 in [14]). In the Riemannian manifold
case, Cheeger’s inequality only refers to the lower bound on A; in terms of & — the
upper bound on A; in terms of ® is Buser’s inequality [I0]. Nonetheless, we stick
with the convention in graph theory and refer to (3.1)) as following from Cheeger’s
inequality.

Next, in Section we briefly discuss the isoperimetric condition and
minimum degree requirement in Theorem In Section [3.2.2] we present the
proof of Theorem [16]

3.2.1 Sharpness of conditions

Before we proceed with the proof of Theorem [16], we briefly discuss the
minimum degree requirement and Cheeger constant bound. First, we show that
each of these conditions, taken on their own, do not ensure that a random ori-
entation of a graph yields a strongly connected directed graph with any nonzero
limiting probability. For instance, Figure |3.1| illustrates the so-called barbell graph
on n vertices, which has minimum degree a factor of n but possesses a bridge.
Similarly, the graph obtained by connecting a single vertex to exactly one vertex
of K,_1 has Cheeger constant always at least 1/2 (as we prove below) but again
contains a bridge. Thus, neither condition in Theorem on its own, is sufficient

in ensuring the result.

Proposition 15. Let G = (V, E) be the graph on {vq,...,v,} obtained by con-
necting a single vertez to exactly one vertex of K, _1. Then h(G) > % forn > 4.
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Proof. Let {v1,...,v,_1} denote the set of vertices in the clique, and {v;,v,} the
appended edge. For ease of exposition, we assume n is even. For any subset S

with |S| = k > 2 satisfying vol(S) < 3vol(G), there are four cases:

(k(n—k)+1
k(n—1)+1
(k—D(n—-k+1)+1

(k—1)(n—-1)+1
(k—1)(n—k+1)
(k—=1)(n—1)+2
n—k

\n—1

Note that vol(S) < ivol(G) =

k
k < 5+ 1. However, we may assume k < 3, as a straightforward computation

if Un+1 Q/ S,v1 €5,

if v, € S,01 €S,

if Un+1 € S, V1 € S,

if Un+1 g S, U1 g S

shows that when k = 7, the Cheeger constant of a subset in Case 4 is still smaller
than for that of a subset in Case 2 when &k = 5 + 1. We can further restrict
attention to Cases 3 and 4 above since the Cheeger constant of such subsets is
always smaller than those in Cases 1 and 2, respectively.

Now, for fixed n, the Cheeger constant in Cases 3 and 4 is strictly monotoni-

cally decreasing for 2 < k < 5 And whenever n > 4 and k > 3, Ekil)(”fkﬂ)

n—=k
k—1)(n—1)+2 > n—1"
Thus

ifn=4,
h(G) =

= oW

1 .
pa Ty if n > 5.

[]

Next, we show our minimum degree requirement is sharp while the bound
on the Cheeger constant is sharp up to a log, log, n factor. In order to do this, we
will make use of the fact that if G is a random d-regular graph, for d = clog, n,
then G has a Cheeger constant bounded away from zero. Such results were known
for fixed d dating to the work of Bollobas [7].

For non-constant degree, as in our case, the easiest approach to such a result
is to appeal to the spectra. The study of spectra of random regular graphs has

a long history, culminating most famously in Friedman’s proof of Alon’s second
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Figure 3.1: Two copies of K,/ connected by an edge.

eigenvalue conjecture [24]: random regular graphs of fixed degree d have second
eigenvalue of the adjacency matrix 2v/d — 1+ for any € > 0, with high probability.
This, again unfortunately for our work, focuses on the case with constant degree.
Fortunately for our purposes, Broder, Frieze, Suen and Upfal [9] showed that
the technique used by Kahn and Szemeredi in [28] works in the case that d =
o(n'/?), and shows that the second eigenvalue of the adjacency matrix is O(v/d)
for such graphs. In terms of normalized Laplacian eigenvalues, this shows that
Al > 1 — O(d/?) in this regime, and through Cheeger’s inequality random d-
regular graphs have Cheeger constant satisfying & > % with high probability so
long as n is sufficiently large. We mention that this problem is still attracting
attention, as just recently, Cook, Goldstein and Johnson [40] proved that the second
adjacency eigenvalue for a random d-regular graph is still O(v/d) for d = o(n?/?).

We now use the fact that a log,n regular graph has Cheeger constant at

least 1/4 with high probability when considering the following example, which

shows our minimum degree requirement is sharp.
Example 7. Let G' be a random t reqular graph on N = 2! vertices.

Proposition 16. G’ has minimum degree log, N and, with high probability, Cheeger
constant at least }L. However, a random orientation of G' is disconnected with lim-

iting probability at least 1 — %

Proof. We show a random orientation of G’ is disconnected with limiting proba-

bility at least 1 — % Since G’ is log, N regular, the probability a vertex is a sink

in a random orientation is % Assume the vertices are labeled and let B; denote

the event that vertex 7 is a sink. For fixed k, define
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{ininke (V)

By Brun’s sieve [5, Theorem 8.3.1], if we show that for every fixed k

1
; k) — —
a5 R

then the limiting probability there are no sinks in a random orientation of G’ is %
Note that if {i,j} € E(G’), then P(B; N B;) = 0. Thus, we may rewrite the sum
for S*) as over all independent sets with k vertices. Accordingly, since we need
each of the t = log, N edges for each of the k vertices to be oriented so that each
is a sink, P(B;, N---N B, ) = (%)k = 5. At most, every k-subset of V(@) is an
independent set, yielding the upper bound

N\ 1 1
(k) « o~
5 _(k‘)Nk k!’

and at least, there are & - N(N —log, N)... (N — (k — 1)logy, N) > W

independent sets of size k, yielding the lower bound
(1_ klOgQN)k.Nk- 1

(k) N ~
o2 k!l Nk k!

O

Having shown that the minimum degree condition in Theorem [16|is sharp,
we now use GG’ to construct a graph G to show the Cheeger constant condition in

Theorem [16[is sharp up to a log, log, n factor.

Example 8. For any integer ¢ > 1, consider the graph G on n vertices obtained
from G’ by appending to each vertex in G' vertex disjoint complete graphs on ct
vertices. (Equivalently, G is constructed by taking N vertex disjoint cliques on ct
vertices, selecting from each of them a distinguished vertex, and amongst the N
distinguished vertices, placing a t reqular random graph). See Figure for one

example of this construction.
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Figure 3.2: The graph GG in Example |8 with t = ¢ = 2.

Proposition 17. G has minimum degree Q(logy, n) and Cheeger constant ®(G) =
Q(logy' n). However, a random orientation of G is disconnected with limiting

probability at least 1 — *.

Proof. First, recalling that GG is constructed by appending disjoint complete graphs

to each vertex in G’, Proposition 16| immediately implies a random orientation of
1

G is disconnected with limiting probability at least 1 — -. Next, we examine

the minimum degree and Cheeger constant of G. Note that the graph G is on
n = ctN vertices, and log,n = t 4 log,(ct). For t large enough, the minimum
degree in the graph (which is ¢t — 1) is at least CIO% and the maximum degree is
(c+ 1)t — 1 < 2clogyn. For any subset X C V(G) with vol(X) < vol(G)/2, we

will show that B
e(X, X)

vol(X)

Note that since every vertex has degree O(log, n) it suffices to show that for all

= Q(log; ' n).

subsets of cardinality at most 3,

e(X, X)
RY

= Q(1).

This is what we shall do. Let S C V(G) denote the vertices of G’ (contained as
a subgraph of G.) Let Si,...,Sy denote the vertices contained (respectively) in
each of the N cliques. Note |S; N S| =1 for all 7, as there is a unique distinguished
vertex per clique. Fix a set X C V(G). Define the sets

S'=XnNS§S,

Ty={re€ X :zeb with (S;NS") #( for some i € [N]},

Sl
S") = 0 for some i € [N]}.

TQZ{ZL'EXIGSZWlth(Szﬂ



64

Note that S’ C T7 and 77 and T, partition X. We observe that

€(X, X) _ e(TlaX) + 6(T27X)
| X] Ta|+ T

a+b>min 4 9
c+d c'd|’

valid for positive a, b, c, d, it suffices to show that both < |T | ) and © %‘X) are both
0

Q(1) (unless one of them is § — note that both of them cannot be since X is

By the real number inequality

non-empty).

e(Tz
R |

r; = |S; N'Ty|. Note that r; < ¢t — 1 for every i, as the distinguished vertices are

We begin by proving that = Q(1) so long as T; is non-empty. Let

not in T,. Further note that since S; is a clique, the r; vertices in .S; are adjacent

to all remaining ct — r; vertices in the clique which are in X. Thus

e(Ty, X) = Zrl ct —r;) >Z7’Z T,
so e(Ty, X)/|T| = Q(1).

It is slightly more complicated to bound < X)) Similarly, we let n; =

’S,L ﬂT1| Let m = ‘Tl N S’ Then

\Tl

e(Ty, X)=e(TyNS,XNS)+ Zni(ct —ny).

Since G’ has ®(G’) >

1
4

. 1
e(ThnS, XnNs) > Zmin{m,N—m}-logQN.

If m < 2¥ this is sufficient to show (|TT1—‘ = (1), since |T1| = O(mlog, N) and
e(TyN S, X NS)=Q(mlog, N). Otherwise, if m > 2%, without loss of generality

ni,Na, ..., N, are positive. Consider the function:

f(ni,ng,ng, ... np) = an’(Ct —ny).
:
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Note that if z > y,
(x4+1)(ct—(x+1))+(y—1)(ct—(y—1))— (z(ct — x) + y(ct —y)) = 2(y—z—1) < 0.

Thus, for any two arguments of the function f, increasing the larger by 1 while
decreasing the smaller by 1 decreases the function. Since f is symmetric in its
variables, we may relabel them so that ny > --- > n,, and repeatedly apply the

above observation to yield:
f(ni,ng, ... ny) > flet ety -+ et,x,1,1,...,1,1),

so that the arguments sum to > n; and 1 < x < ¢t. Since Y n; < 5 and m > %,

this means that there are at least % 1’s, so

4N
f(ni,ng,ms, ... ny) > fletyet, -+ ctyx,1,1,...,1,1) > 0 1(ct — 1) = Q(n).

This shows e(Ty, X) = Q(n), hence (hX) 2(1). Thus we have shown ®(G) =

|71

Q(logy ' n). O

3.2.2 Proof of Theorem [16

Our general approach to proving Theorem is based on the observation
that a directed graph is strongly connected if and only if every nonempty proper
subset X C V(@) has an edge both entering and leaving it. Namely, we bound
the probability that every connected set X C V(G) with vol(X) < vol(G)/2 has

an edge both entering and leaving it.

Definition 6. For a subset X of vertices let Bx be the event that vol(X) <
vol(G)/2, X is connected in G and X has either no edges oriented into it or
out of it. Note only the third property here is random — if X does not have one of
the first two properties, P(Bx) = 0 deterministically. We further define

B, = U By.
)

XCv(G
|X|=k
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We estimate P(J, Br) < >, P(By) by dividing & into two regimes. First
we prove that every small subset (where |X| < clog,n) has an edge entering and
leaving:

Regime 1: We claim Y0252 " P(B,) < 4.

no

Proof. We begin by noting that for a given set X of size k, there are at most (’2“)

edges induced on X and hence, recalling that 6 denotes the minimum degree, there

are at least 0k — (g) edges leaving. Note that in this regime, 0k — (’;) > () since
k < 5 logyn. For a given set X,

P(Bx) < 27+ ()11,
and this gives an estimate

P(By) < (Z) 2~ kHG)H =y
We note that if £ < 5 log, n,
n _ k+1
b ()2 oD+ (") 41
o n\ o—6k+(*)+1
T e O
_ (n—k)2
~ (k+1)2°
2k 1

< — < -

S as5
Then

S logyn
> P(B) < 2P(By) < 2n2' (e — 4pe,
k=1
O

Regime 2: We claim > 7} 9100, P(Br) <

— an®logyn”

Proof. For large sets, we must take greater care — the number of edges that could be
induced in sets is much larger, we utilize our lower bound on the Cheeger constant

to ensure many edges leave each set. Since the number of potential £k sets grows
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large as well, we will restrict attention to counting only connected sets so as to not
over count.

To this end, we will enumerate connected k sets by considering rooted
spanning trees in GG, which we will consider labeled. The shape of spanning trees,
can of course, vary wildly. For the purposes of this work we will enumerate them

by their exposure sequence.

Definition 7. An exposure sequence m = (mwi,ma,...,Tk_1) of a labeled rooted
spanning tree on k wvertices is determined as follows: newly label the vertices in
breadth-first order, with ties broken by the original labeling of the tree. Then,

under this new labeling m; is the number of children of vertex v; in the tree. See

Figure[3.3 for an example.

Therefore, an exposure sequence of a rooted spanning tree on k vertices
is an (ordered) list of (kK — 1) non-negative integers (my,ma,...,mx_1) satisfying
Zig M= and Zf:_ll m; = k — 1. A given exposure sequence of £ — 1 numbers
uniquely determines the shape of the rooted, spanning tree on k vertices. Since
these vertices are labeled in breadth-first order, the kth vertex is necessarily a leaf
of the tree, so by convention we have 7, = 0. We note that an exposure sequence
for a rooted spanning tree on k vertices can be thought of as a staircase walk on
the square lattice from (0,0) to (k — 1,k — 1) which never crosses the diagonal.
Namely, the staircase walk corresponding to exposure sequence 7 is formed by
taking m; steps east and 1 step north for ¢ = 1,...,k — 1 (see Figure . Thus,
counting all possible exposure sequences is equivalent to counting all Dyck paths
on the square lattice, which is given by the Catalan numbers: ¢, _; = %(2(;_—11))_

We will enumerate all of the rooted subtrees in G on k vertices by their

exposure sequence. Our task now is to bound the following sum:
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s
’
7
7
’
/|
’
s
7
s

Figure 3.3: Left: a breadth-first vertex labeling of a rooted tree yielding expo-
sure sequence ™ = (1,2,0,3,0,0,1). Right: the staircase walk corresponding to
exposure sequence 7 = (1,2,0,3,0,0,1).

PB)< Y o>

m=(m1,72...,7p—1) V1EV(G) {v2,V3,...,U1 41 }

(")
> ) P(Bx), (32)
{vagm 7”3+7r]{/("' ,)vﬂ1+w2+1} {Vk—mjo_q 41550k}
(1) (i)
where X = {vy,...,v;} and (N7(r7_”')) denotes the set of all sets of m; vertices adjacent

k3

to v; in the original graph . For any X which is connected in the original graph,

vol(G)

0 if vol(X) > v

P(Bx) =

>
21—e(X,X) if VOI(X) < volg(G’)

In the second case,

P(By) < 2!7¢XX) < gl-@vol(X) _ gl=®3,, cx deg(vi)

Since this bounds P(Bx) above by a positive quantity (and P(Bx) is otherwise
zero), the inequality

P(Bx) < 2!~ Duex st (33)

holds for every X. We now use (3.3) to bound the right hand side of (3.2). We

wish to collapse a term of the form

Z 21—<I>deg(vj)’

()

J
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as (after having already bounded each of the summands for v; where i > j) we will

have ensured that the summand is independent of the 7; vertices chosen. Thus,

Z 21—<I>deg(vj) — (deg(vj))21—¢'deg(vj).

(N(vj)) 7T]
j

We will give an upper bound of this term which is independent of v;, depending
only on 7; and d, and this will allow us to continue collapsing the sum (3.2]). We
find three different upper bounds for this term for the cases when m; = 0, 7; = 1,

or m; > 1.

Case 1: m; = 0.
If v; is a leaf of the embedded spanning tree (which corresponds to m; = 0),

we simply bound

217<I> deg(vj) < 217<I>-(1+a) logy 1

Case 2: m; > 1.
Since the terms we are interested in have the general form: (dei(_”j)) 91— deg(v;)
J

we investigate the associated sequence defined by fixing 7; and varying deg(v;). In

S _
Kst = <t)21 <I>s7

so that the terms appearing above are Kqeg(v;),r,- Then for a fixed ¢ and varying s,

general, let

the sequence r,; is unimodal. We have that

st (1_ t )2‘?
Kst1,t s+1

Thus the maximum of x,,, for a fixed ¢, is achieved by the smallest s such that

Ketr1t < Kst, yielding

t
<1-27%
s+1
or equivalently
t
1) > ——.
(s+D>15

Thus the maximum of ks, occurs when

t
Smax(t) = m :
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Indeed, extending the binomial coefficients to the reals in the usual way, the floor

function can be dropped. Recalling that ®, s > 0, for fixed ¢t we have:

—o\—1
Koy < (1 -2 ) t 21—«1»(1—2*‘})*11:‘ (3.4)
’ t

Next, we use the entropy bound:

n n"
() = g =2

where H(q) = —qlogyq — (1 — q) logy(1 — q) is the binary entropy function.

Applying this bound to the binomial coefficient in ([3.4]) yields:

log, ((1 - 2;@)—115) <(1—-2"")"H(1-27%)

=—(1=2"")""[(1—2"")logy(1 —27%) + 27 % log,(27?)]
P
20 — 1|

=t [— logy(1 —27%) +
Combining this upper bound with (3.4)) and simplifying, we have that
Kot S 21+t(—10g2(1—27q>)—<1>). (35)

We will now provide constant upper bounds on the terms involving ® in
the exponent of 1) Setting f(z) = —logy(1 — 27%), we have f'(z) = 57 and

21
so for z > 0,

f(x):f<1)+/le'(t)dt:1+/ 2t1_1dt.

Since 1 + z1ln2 < e*™2 = 27 we have that for > 0,

1
1
< _— = — .
f($)_1+/m tln2dt 1 — log,(x)

We may use this to bound (3.5)), yielding

Koy < 21—t log, (®)+t )
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Although we will only apply this when m; > 1, this gives the general bound, good
for any deg(v,), m; that
(deg(vj))21—<l>deg(vj) < 9l-mjlogy(®)+m;
7

Case 3: m; = 1.

In this case, the previous bound does not suffice for our purposes. Here, we
improve the bound by observing that our conditions imply that deg(v;) > Spqa(t)-
Indeed, our condition that & > ¢ loglf)gl# implies that for n sufficiently large,

(14 a)logyn > (1 —27%)"'. Hence we are interested in Kgeg(v,),r, and by the

unimodality of the x4, for ¢ fixed, we can derive the bound:

(deg(vj)> 217<I> deg(vy) < ((1 + Oé) 1Og2 n) 217<I>-(1+a) log, n

T T
< ((1 + a) 10g2 n)7r‘7'21—q>'(1+06) logy n

_ 21+7Tj [logs (14-)+logy, logg n]—®-(1+a) logy n7 (36)

which for 7m; = 1 simplifies to

<deg(vj)>21—q>deg(vj) < 21+[log2(1+a)+log2 logy n]—@-(1+a) logy n
1
Collecting our results from Cases 1, 2, and 3, we have established the fol-

lowing:

§ 217<I>deg(vj) _ (deg(vj)) 217<I>deg(vj)
7"—.
(v)) J
QD)

217<I>-(1+a) logy n if T = 0
< 21+[log2(1+a)+10g2 log, n]—®-(1+a)logy n if T = 1. (37)
l4m; logy (1/®)+7; if T > 1

Before we collapse the sum (3.2) using (3.7]), we make a few simple com-
binatorial observations concerning exposure sequences of rooted spanning trees.
Recalling that a degree of a vertex in the spanning tree is m; for vy, and m; 4+ 1 for

v;, we define the following:



72

Definition 8. For an exposure sequence m = (my,...,Tx_1), let
((m)y=1+|{j<k—-1:7; =0}

denote the number of leaves of the spanning tree described by the sequence and we

let
pm)={j<k—-1:m =1}

Lemma 4. For any exposure sequence T, we have

) +U(m) 2 3,

o Z m; < k—p(m).

Jim;2>2

Proof. For the first observation, note that if p(r) + ¢(7) < %, then there are at

least % terms in 7 that are at least 2, yielding the contradiction:

Ea

-1
k=(k/2)-2<> m=k—1.

=1

And, for the second observation:

k-1
k—lZZﬂ'i:Zﬂ'j—i‘Zﬂ'j—i‘Zﬂ'j
i=1 0

Jimj>2 Jimi=1 Jimi=
= E T + p(?r).
Jimi>2

]

We now proceed to bound P(By) (3.2). We will take logarithm here for
readability so that every term would not appear in the exponent — this should be
viewed most naturally by exponentiating both sides. Iteratively applying , we
obtain that for a fixed 7 = (7, -+ ,m_1) and v; € V(G)

log, P(By) < log, Z Z T Z P(Bx)

{v2,v3,- 01471 } {v2471 V34my s Umy 4o 1} {Vk—mp_y+10Vk}
N(v1) N(v2) N(vg_1)
E( T ) G( T2 ) G( Trk}ill )
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IN

Z 14 mjlog,(1/®) + Wj] + p(m)[1 + logy(1 + ) + log, log, n]

Jimi>2

— (p(m) + £(m))®-(1 + ) logy n + £(7)

=X m 10g2(1/<1>)+7fj] + p(m)[log,(1 + ) + log, log, 1]

Jimi>2

= (p(m) + £(7))®-(1 + ) logy 1 + k.

Continuing, we apply Lemma [4] to yield

[ > milogy(1/®) + 7@'] +p(m)[logy (1 + a) + log; log, n]

— (p(m) + £(m))®-(1 + ) logyn + k
< (k —p(m)) (logy(1/®) + 1) + p(m)[logy (1 + ) 4 log, log, n]

k
— 5-(19-(1 + a)logyn + k.

Next, using the fact that & > fbg@% for some (large) constant &, we

obtain

(k= p(m)) (logy(1/®) 4 1) 4 p(m)[logy (1 + ) 4 log, log, 1]
- g'q)'(l +a)logyn + k
< (k= p(m))logzlog, n + (k — p(m)) + p(w) log, (1 + a)

k
+ p(7) log, logyn — 55(1 + ) logy logyn + k
<k (log2 log, n [1 — g(l + oz)] + (2 + logy (1 + a))) . (3.8)

Finally, for £ > 4 and n sufficiently large we have:

k (10g2 log, n {1 — g(l + a)} + (2 + logy(1 + a)))

< k(logylogyn [1 —2(1 + «)])

.alog2 log, n
2

< —k(2a7!' 4+ 4).

=—k (204_1 + 4)
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Therefore, by assuming n and £ are large enough, for any fixed = and

v; € V(G) we have that:

Z Z Z P(Byx)

{v2,03,- V147 } {02471 V3 4my s Wrpbmgt1} {Vk—my 410V}
N(vy) N(vg) N(vy_
(") e(?) e(MoEY)

< 2—(2&71+4)k'

Using the above bound and recalling that there are ¢;,_; = k* (2(:_—11)) many

exposure sequences, we now bound all of (3.2)) as:

D S VD S

m=(m1,72...,T—1) V1EV(G) {v2,V3,..,V1 471 }

G(N(Ul))
1
> )L P(By)
{’U2+7\'17U3+7\']{[7<'“7)'U‘rr1+7r2+1} {vk—ﬂk_1+17"'7vk}
6( 71_1;2) G(Nﬁzkfill))

S Y3 et

m=(m1,72..., k1) V1IEV(G)

2B =1)\ (941
< 1 9—(2a7 1 +4)k
< nk ( k1 )

< nk,—14k—12—(2a*1+4)k

_ 210g2 n— (10g2 k+(2a‘1+2)k+2>

<9~ (logy k+2k+2)

Y

where, in the last inequality, we used that & > 7 logyn. Thus:

Z P(Bk) < Z 2—(log2 k+2k+2)

k=5 logyn k=5 logyn
<9. 2—(log2(% log, n)+alog, n+2)
1
an®logyn’

This completes our estimate for Regime 2.
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Finally, combining the estimates we derived in each regime, we see that
" - 14+ 4alogyn
P B | < P(B;) < ———=—,
<14L;J1 k) - ; (By) < an®log,n

14+-4alogy n

- = 1—0(1), a random orientation
an®logy n

and thus with probability at least 1 —
of G is strongly connected, completing our proof of Theorem [16]

O

3.3 Main theorem: weak form

Here, we present a related, but somewhat weaker form of Theorem (16| that
replaces the isoperimetric condition with a more restrictive condition on the spec-

tral gap of the normalized Laplacian, 0 = max {1 — \j, \,—1 — 1}.

Theorem 17. There exist ¢,c/,c’ € RY and n, € Z* such that if G is a graph
with |V(G)| > n,, minimum degree § > clogn and spectral gap of the normalized
Laplacian o < ¢, then a randomly oriented copy of G is strongly connected with

probability p > 1 — %

As before in Theorem [I6, we remark that our approach here also does not
assume the regularity of G and that each condition on G is insufficient on its own
to imply the result. In particular, that the assumption on the spectral gap o of G
is insufficient can be easily seen by considering a log, n-regular graph. From the

Alon-Bopanna bound [41], one can conclude that the spectral gap the normalized

24/1 —1
oo Vlomn=1_

log, n

Laplacian satisfies

while a random orientation fails to be strongly connected with high probability
for the same reasons described in Proposition To prove our theorem, we give
an algorithm that attempts to construct a directed path between two vertices
by simultaneously building the successive out-neighborhoods of one vertex and

in-neighborhoods of another vertex. Once each neighborhood has expanded to a
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suitable size, we bound the number of edges between them. We establish the result

by bounding the probability of failure at each step in the process.

3.3.1 Tools and neighborhood expansion algorithm

We adopt the following notation, some of which will be defined more explic-
itly in the algorithm: for a subset S C V(G) where G is the underlying undirected
host graph, vol(S) = >~ cy g dos N(S) = {u:u~ s € S}, and e(X,Y) denotes
the number of (undirected) edges between X,Y. When considering the resulting
randomly oriented digraph, U(t) denotes the “unexplored” vertices at time ¢ avail-
able for inclusion in the subsequent neighborhood expansion. We let V,.(t) and
V,(t) denote the current unexplored out and in-neighborhoods of vertices z and
y respectively at time t. At each time step, we write the “smaller” and “larger”

neighborhoods as follows:
Va(t) i vol(V,(1)) < vol(Vy(t))

V,(t) otherwise

Ve(t) if vol(V4(t)) > vol(V,(t))
V,(t) otherwise .

We use NT(V,(t)) and N~ (V,(t)) to denote the out and in-neighborhoods
of V,(t) and V,(¢) while N*(V__ (¢)) is understood to mean N*(V_ (¢))if V. (t) =
V;(t) and N=(V.

min

(t)) otherwise. Our proof utilizes the following two theorems.
First, we use the discrepancy inequality, sometimes referred to as the expander

mixing lemma by others.

Theorem 18 (Discrepancy Inequality [14]). Let G be a graph with spectral gap
o =max{l — A\, \,_1 — 1} of the normalized Laplacian L. Then

vol(X)vol(Y) < oy/vol(X)vol(Y).

vol(G)

The above result can be strengthened to obtain:

vol(X)vol(Y) | y/vol(X)vol(Y )vol (X)vol (V)
() u%
vol(QG) - vol(G)

e(X,Y) —

‘e(X, Y) —
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As an aside, we mention that Chung and Kenter, as well as Butler, proved
several analogs of the above discrepancy inequality for directed graphs. While
not relevant for our purposes here, we refer the interested reader to [I7] and [11]
respectively. Secondly, we utilize the Chernoff bounds [I3], a typical statement of
which, taken from [I8], is the following:

Theorem 19 (Chernoff Bounds [13]). Let X1,..., X,, be independent random vari-
ables with P(X; = 1) = p;, P(X; =0) =1 —p;, X = > | X, and expectation
E(X) = >"",pi. Then we have the following lower and upper tails

P(X <E(X) — \) < e /2B,

2

P(X > E(X)+ \) < ¢ 70075

We try to construct a directed path between two vertices algorithmically.

Algorithm 1 Find directed path z,...,y
input: vertices x,y in randomly oriented digraph

output: success or failure

1: V,(0) « {z}
2: V,(0) < {y} Step 0
U(0) = V(G) \ {z,y}

Ve(1) « NT(x)
Vy(1) <= N~ (y)

U(1) < V(G) \ {z,y}

if V,(1)nV,(1) # @ or y € V(1) then

return success Step 1

10: end if

11 if V(1)) < %O o |y, (1)] < %O then

12: return failure

13: end if
14:
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Algorithm 1 Find directed path z, ...,y (continued)

15: t=1

16: while vol(V,(t)) < *%D o1 vol(V,, (1)) < *RD do

17 Ut+1)«U@#)\ V.. (1)
18 V. (t+1)« NV _()NU@Et+1)

min min

19: V.t+1)«V (1)

max

20: itV (t+1)NnV,  (t+1)+# @ then
21: return success

22: end if

23: if vol(V.. (t+1)) <2 vol(V_, (t)) then
24: return failure

25: end if

26: t=t+1

27: end while

28:

29: if N*(V,(t)) NV, (t) # @ then |
30: return success

31: else Step 3

32: return failure

33: end if /

Step 2

3.3.2 Proof of Theorem [17|

We prove Theorem (17| by bounding the probability of failure at each step

in Algorithm [1}
Step 1: We claim that P(failure in Step 1) < 2n~¢/16.

Proof. Letting X = |N*(z)|, from our minimum degree requirement 6 > clogn,

we have that E(X) > $logn. Using the lower tail of the Chernoff bound with

A =E(X)/2, we obtain:

P(X < Zlog n) < n~¢1.
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The claim thus follows by the union bound. O]

Step 2: We bound the probability of failure after one iteration of the while loop,

given that failure has not yet occurred. We will require the following lemma:

Lemma 5. If vol(V, (t)) =€ vol(G), then vol(U(t + 1)) > (1 — 4e)vol(G).

min

Proof. Equivalently stated, we must show
vol(U(t + 1)) > vol(G) — 4vol(V_. (t)).

(t+1)) = 2vol(V,,,(1)).
The volume of each successive neighborhood grows geometrically, thereby ensuring
both

To avoid failure, recall that we require vol(V.

min

2vol(V. (1)) > > vol(V(1)),

{i€[t]: Vi, (O=Va(9)}
2vol(V._ (1)) > > vol(V,,(i)).
{i€[t]:Viin (=Vy ()}

So, at time ¢, we have removed a set with volume at most 4vol(V_ . (¢)) from

U(t+1). O

Using this lemma, we find a lower bound on the number of edges between

V (t)) using the

min

(t) and the unexplored vertices U(t + 1) in terms of vol(V.

min

strengthened discrepancy inequality. Observe

vol(V_. (t))vol(U(t + 1))

e(V.. (#),Ut+1))> = vol(G) -
VVOl(V,, (0ol (V. (D)) vol (Ut + 1))vol(TZ + 1))
’ vol(G)
> (1= 16)v0l(y, (1) — o LU= EEElC

= (1 —4e)vol(V.. () = 20vol(V._ (t))/(1 — )(1 — 4e)

(1= 4 = 20 /(T = &) (T = 42) ) vol(V,,, (1))
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S Y ()

where the second inequality holds since, using the lemma along with the fact that
e < 1/100 yields U(t + 1) > 2 (vol(G)), implying (1 — 4¢)4evol(G)* > vol(U (¢t +
D)vol(U(t +1)).

Next, considering our undirected host graph G, we partition N (V.. (¢)) N
U(t + 1) into two sets: one in which there are “many” edges from V__ () to

N(V_..(t)NU(t+ 1) and one in which there are “few”. More precisely, define

Ti={ve NV, t)NUEt+1):e(,V,,, (t) > 5log,n},

min

Th={ve NV, )NUt+1):e(v,V () <5logyn}.

min min

Upon randomly orienting our graph, we have

Pog NV, 0) < (5) =n

And since there are at most n vertices in 77, we have
P(3veTi:vg N5V, (1)) <n ™

Observe that at least half of the edges leaving V.

min

half of the edges leaving V., (t) go to T5. We thus divide the remainder of the proof

(t) go to Ty or at least

into two cases, showing that in either case, the volume of the next neighborhood

of V., (t) is sufficiently large to avoid incurring failure.

Case 1: e(V, (¢),Th) > 3e(V, . (¢),U(t + 1)).

mi

Combining our assumption for Case 1 along with the above bound on

e(V_..(t),U(t+1)) yields
(V.
w < (V.. (6),T).
Considering this fact, assume for sake of contradiction that vol(77) <
2vol(V_, (t)). Then

v

min

(V. (O.T}) < vol(V_. (t))vol(T}

o (0,11) < ) GV el
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< vol(T})

— 100

vol(V,..(t))
< B + \/§UV01(Vmin (),

+0o \/VOI(Vmin (t))vol(Th)

which is a contradiction.

Case 2: e(V.

min

(t), TQ) Z %e(V

min

(t),U(t+1)).

Again, we have

w < e(V.. (1), To).

And by definition, each vertex in 7, has fewer than 5log,n edges from
v

min

(t). Putting these two facts together yields

vol(V,uin (1)

Ty > .
T2l 2 20logy n

Upon orienting edges randomly, we have

log 2 vol(V_. (%))
E(|V  (t+1)]) > ——
(Va0 1)) > B2 Y0 e

Using the lower tail of the Chernoff bound with A = E(|V._. (t+ 1)|)/2 and
the fact that vol(V_. (¢)) > vol(V_. (1)) > % log® n yields

min

log 2 VOI(V . (t)) _ c2 log 2 1 _ 2 log 2
P( V (t+1)] < min > < e~ (Fasp ) logn — 1280 .

Thus, from our minimum degree requirement, we know that with probabil-

. _02 log 2
ity 1 —n~ 120 , we have

clog?2
80

vol(V.

min

(t+1)) > vol(V.

min

() > 2vol(V,,,, (1)),

for ¢ > 160/log2. Finally, we can bound the probability of failure in Step 2.
The number of iterations are bounded above by 2log,(vol(G)). Since Case 1 has
a higher probability of failure, we have

P(failure in Step 2) < 2log,(vol(G))n™*.
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Step 3: At this final stage, the successive neighborhoods of each vertex have grown

sufficiently large (i.e. vol(V,(t)) > %(OG) and vol(V,(t)) > %(OG)). We find a lower

bound on the number of edges between them using the discrepancy inequality:

(0. 13(0) 2 = G ool )
1 — 1000

— 10000
1 —1000
>

— 10000

vol(G)
cnlogn,

where the second inequality follows since the left hand-side is monotonically in-
creasing in vol(V(¢))vol(V,(t)) for vol(V,(t))vol(V,(t)) > (vol(G)/100)? given our
choice of o.

Here, failure occurs only if all these edges are oriented in the same direc-

tion. Thus,

1—1000 cn(1—-1000)

P(failure in Step 3) > 27( o enlogn) _ n~ loe2(e)10,000

thereby completing the proof of Theorem
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Chapter 4

Related future work

4.1 Maximum hitting time for directed graphs

Beyond what we’ve mentioned, there appears to be little known about how
the principal ratio of a directed graph may be related to other important random
walk parameters. In the undirected case, extremal families for the principal ratio
have been shown to be extremal for other parameters, like maximum hitting time.
In particular, the expected hitting time Hg(u,v) between two vertices u and v in
a graph G is the expected number of steps it takes to reach v, in a random walk

starting at u. In the undirected case, Brightwell and Winkler proved the following:

Theorem 20 (Brightwell, Winkler [§]). Let G be a connected graph on n vertices
and Hg(u,v) denote the expected hitting time it takes to reach v from w in a simple

random walk on G. Then

4
H ~—n3
Jhax (m G<“»v>) T

and is achieved by vertices u,v in a lollipop graph (see Figure , consisting of a

2n+1
3

clique of size L J containing vertex u, to which a path on the remaining vertices

ending i v has been attached.

Tait and Tobin showed that the extremal graphs for the principal ratio are

also lollipop graphs, albeit with a slightly different clique size and path length [48].

83
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Figure 4.1: The lollipop graph described in Theorem [20| for n = 12.

Indeed, lollipop graphs have been shown to be extremal for a number of other
random walk parameters, such as cover time [23] and commute time [29].

In the directed case, it seems plausible that the extremal graphs for principal
ratio are part of a larger family of directed graphs extremal for maximum hitting
time. Below, we formulate this conjecture formally and derive an explicit formula
for the maximum hitting time of our principal ratio extremal graphs. This shows
that, whereas the maximum hitting time is on the order of n? in the undirected
case, maximum hitting time is at least on the order of (n—1)! in the directed case.

Formally, the hitting time between two vertices u,v € V(D) in a random
walk on a directed graph D is denoted Hp(u,v) and defined by

Z HD(w7U)7 ifu?‘év>
weN (u) (41)

1+

Hp(u,v) = d*(u)

0 if u=v.
The maximum hitting time of a directed graph, denoted a(D), is the max-

imum hitting time between all pairs of vertices, i.e.

a(D) = u’glelg}({D) Hp(u,v).

Question 1. What is

a(n) = max «(D),
( ) D:|V(D)|=n ( )
and what is the family of directed graphs achieving this maximum?

Conjecture 1.

an)=[(e—1)(In—1)—3H, +2H,.1],
where H,, denotes the n-th harmonic number and !n is the left factorial defined as
In = Z?:_Ol ). Asymptotically,

lim a(n) =(e—1)-(n— 1)

n—oo
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Figure 4.2: An illustration of D,, for n = 5. A particular member of D,, contains
all the undashed edges and any positive number of the dashed edges.

We conjecture a(n) is mazximized precisely by the family of n-vertex directed

graphs D,, with vertex set {vy,vq,...,v,} and edge set
{(vi,vig1) + foralll <i<n-—1)}U{(vj,v;): foralll<i<j<n-—1}USY,
for any nonempty S C {(vn,v;) 1 i € [n — 1]}. See Figure[.2] for an illustration.

The posited maximum hitting time in Conjecture [1}is the maximum hitting
time of the principal ratio extremal graphs we found in Theorem [I0] which belong
to the family D,, defined above. Below, we find a closed-form expression for the

maximum hitting time for D,, in terms of n.

Claim 2. Let D € D, where D,, is defined above. Then a(D) = Hp(l,n) =
[(e—=1)('n—1) —3H, +2H,1]. Asymptotically,

lim a(D) =(e—1)-(n— 1)L

n—oo

Proof. For ease of notation, let z;, := Hp(i,n) for i = 1,...,n. Applying the
formula for hitting time for D yields z1, = 1 + 22, and z,, = 0 and for
1=2,....,n—1,

Tim =1+ % (14 F+ Ticin + Tiv1n) -
We claim that

Tipn = fi + Titin, (4.2)
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where f;, = Zk K We prove this by strong induction. Since z; = 1 + x5 and

i=1 741"
To = 3+w3, we have fi = 1 and fo = 3. Assume the claim holds fori =1,...,k—1.
Then

1
Tkn = 1+ E (xl,n 4+ Tk—1,n + xk+1,n)
1
=1+ E<(f1 +29,) + (fo+a30) + -+ (fem1 + Ton) + $k+1,n>
1
:1+E((fl+"'+fk—1)+(f2+"“"fkfl)"i_"'"’_

(fe—1) + (k= 1D)zp + $k+1,n>

k—1
1 .
=14+ E ( E ifi + (k — 1)1’14,71 + xk+1,n>

i=1

k-1
= (k‘ + Z ifi) + Thiin,
i1

where f, = k+ Zi:ll if;. Next, we show that k + Zi:ll ifi = Zle ’f—,' with f; = 1.
It is easy to verify the base case holds for £ = 2; assume the result holds for

k=1,...,5s—1. Then

s—1
fs = 5+szz
=1

- (s —1)! < sl L s!
:1+SZ i :1+;ﬂ:iz;ﬁ.
Rewriting x; , using and using the fact that z,, = 0, we have that z,; =
Z;ll fr- So, substituting the above formula for f; into this equation yields
el ko
Tin =) 5 (4.3)
k=1 i=1
First, we claim that a(D) = x;,, that is, x1, > z;; for all 7,j € [n]. By
, for any given n, x;, > ;41 and then hence 1, > z;, for any i € [n]. By
([4.3), it is clear that 21, > x1; for any j € [n]. Hence (D) = x1,,.
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Next we shall show
r1,=[(e=1)(In—1)=3H, +2H,.1]. (4.4)
We claim that
fo=1(e=1)- k!, (4.5)
where |z] denotes the largest integer no larger than x. Since fy is an integer and
1
e—1= nh_)rgo Zl E’
to prove (|4.5)) it suffices to show
=K
nh_)r&; a7 fe < 1. (4.6)

We start from the left-hand side of the inequality (4.6)), for &k > 1,

lim — —
lim > 05— fi
i—1
k

n
k! k!
= lim - — —
lim > oS —>
i=1 i=1
n
k!
= lim —
n—00 Z 2!

i=k+1
1 1 "L k!
_ li >
Frl hr 2kt D) +n£’[§oi;3 i
k+3

(k+2)(k+1)

1 . 1 1 1
HTED IS (nﬂﬁom:ﬁ 4k +3) +"'+n---(zf+4)(k+3>)

< F+3 + L -<hm1+ L + L +---+;>
(k+2)(k+1) (E+2)(k+1) \nox2 22 2.2.2 on—k—2

B k+ 4

(k2 (E+1)

< §<1

—_— 6 )

which proves (4.5)). For convenience, we denote the difference between (e — 1) - k!

and fr by ;. From the proof above, we can see that
k+3 2 1

—(e—1) -kl — = —
O = (e—1)- K f’“>(k+2)(k+1) k+1 k+2
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and
k+4 3 2

k+2)(k+1) k+1 k+2
For n > 1, we see that

(Sk<

n—1

1
2Hy = Hyyy = 5 < > 6 < 3H, —2H,., (4.7)

where H,, is the n-th Harmonic number,

"1 1 1 1
Hn: —-~1 5 Toan 40
Zi R T TR D

and 7 ~ 0.5772156649 is the Euler-Mascheroni constant. This observation is
straightforward because

1 1 1 1
9~ L 5 <3 g
rrl ka2 SRS Chag

Now recalling that
1

3
|
3
|
—

k
Zk_': fk7

1 =1 k=1

>
Il

we have
n—1

Tin=Y (e—1)-k'—d). (4.8)

k=1
Next we claim that z;,, is the only integer in the open interval

((e—l)(n—l)—?)H +2H,41, (e—1)(In—1)—-2H, +Hn+1+;>

where In is left factorial defined as

Combining (4.7) and (4.§), it is apparent to see that z;, lies in the open
interval above. We also need check the length of the interval which is equal to

1 1

1 1
<_2Hn + HnJrl + 5) - (_3Hn + 2Hn+1) =-+H,- Hn+1 = 5 n’

2

which implies the length of the interval is bounded by 1/2. It means z1,, is the

only integer in this interval and then hence

Tin = I—(e - 1)(‘” - 1) - 3Hn + 2Hn+1-| .
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Next we shall show the asymptotics of x1 ,. It suffices to show

I Tin 1
1m =

which is equivalent to

_ ln — _
lim (e—1)(In—1)—3H, +2H, 1 _1

Clearly,

H
lim ——"
n—oo (e — 1) - n!

and it is easy to see that

! 1
i (D
n—00 n!
Therefore,
. T1in
lim d = 1.

n=oo (e —1)-(n— 1)1

4.2 Upper bounds on \; for directed graphs

In Section[2.4] we established lower bounds for A;, the first non-trivial eigen-
value of the normalized Laplacian, extending an analogous result for undirected
graphs to the directed case. For the related question of upper bounds on A\;, we
note that the obvious bound,

n

A <

(4.9)

n—1
extends trivially to the directed case, as the trace of the directed normalized Lapla-
cian L is still n and \g = 0. Furthermore, equality holds if G = [—(_:L, the complete
directed graph on n vertices. However, whereas for undirected graphs only the
complete graph K, has A\; > 1 (see [14, Lemma 1.7]), directed graphs other than
I?n, may have \; > 1. For example, deleting any edge of I?; yields a graph with
A1 &~ 1.19; in general, we leave it as an exercise to show that for any e € E(l?n)),
we have )\1([?)” —e) > 1foralln > 3.

One can obtain more refined upper bounds on \; by using the variational
characterization of A\; and cleverly constructing an eigenfunction. For example,

Nilli proved the following:
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Theorem 21 ([41], 14]). Let G be a graph with diameter D > 4 and mazimum

degree k. Then
k—1 2 2
<1-— - — —
Msl-2m (1 D) D

In the directed case, such bounds for the first nontrivial eigenvalue of the
normalized Laplacian are not known. It would be of interest to obtain more nu-

anced bounds than (4.9)) on Ay, in terms of directed diameter and other parameters.

4.3 Hamiltonian cycles in random orientations

In Chapter [3, we showed that under a mild minimum degree condition
and mild eigenvalue condition, all orientations of a given graph are strongly con-
nected. Furthermore, we showed that these conditions are essentially best possi-
ble. Nonetheless, our result could be improved by showing that these (or similar)
conditions guarantee a graph satisfies (with high probability) properties stronger
than strong connectedness, like Hamiltonicity. Namely, for a given graph G, what
minimal conditions on its minimum degree and spectral gap o of its normalized
Laplacian guarantee that a random orientation has a directed Hamiltonian cycle,
with high probability?

It seems unlikely that one could adapt our proofs here to guarantee Hamil-
tonicity, given that our approach was fundamentally geared towards proving strong
connectedness. Grotschel and Haray [20] showed that the only graphs for which
every strong orientation is Hamiltonian are the complete graph and cycle graph.
Extending work of Krivelevich and Sudakov [30] for regular graphs, Butler and
Chung [12] showed that an eigenvalue condition involving the spectral gap of the
combinatorial Laplacian implies an “almost regular” graph is Hamiltonian. It is
unclear whether such results have any bearing on proving existence of Hamiltonian
cycles in random orientations under analogous spectral conditions. A key tool uti-
lized, the so-called rotation-extension technique due to Pésa [44], does not appear

to have an analog in the directed case.
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4.4 Other extremal problems on the principal ra-
tio

Here, we briefly review extremal problems related to Theorem [10] where we
proved a sharp upper bound on the principal ratio of a directed graph. Note that
the three constructions in the statement of Theorem [10] achieving the maximum
principal ratio have maximum in-degree and out-degree equal to n — 1. Addition-
ally, these constructions are also dense, having at least (g) edges out of the 2 - (g)
edges possible. One natural problem would be to determine the maximum of the
principal ratio when in-degree or out-degree are bounded, or when the number of

edges is not very large. Here are several ways to formulate such questions:

Question 2. For given n, k,j with k,j7 <n, what is the maximum principal ratio
over all simple strongly connected directed graphs on n vertices with mazximum out-
degree at most k and mazimum in-degree at most j¢ That is, determine ~y(n,k, j)

where

n,k,j) = max D).

vk j) = max (D)
d$ax:ka dr:lax:j

Question 3. For given n, m, what is the mazximum principal ratio over all strongly

connected directed graphs on n vertices with at most m edges? That is, determine

v(n, m) where

v(n,m) = ?E%%Z;nv(l?)-

For both of the above questions, it would be of interest to characterize the
extremal family of graphs achieving the maximum.

In random walks on unweighted directed graphs, the probability of moving
from a vertex to any of its neighbors is equally likely. For the general case of
random walks on weighted directed graphs, the probability of moving from vertex
u to v is proportional to edge weight w,,. In this case, unless edge weights are
bounded, the principal ratio can be made arbitrarily large by making the weights

of in-edges incident to a particular vertex arbitrarily small. The following question

is of interest:
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Question 4. What is the mazimum principal ratio over all strongly connected
weighted directed graphs on n vertices with edge weight function w : E — RTU{0}

having minimum value Wy, > 0 and mazimum value Wyay < 17

We remark that some of the techniques and constructions used in Chapter
may be useful when considering the weighted case. For example, consider an
edge-weighting of the construction D; defined in Theorem with Wy, = Wmin
for 1 <i<n-—1and w,, =1 for all other edges (u,v) € E(D;). By adapting a
greedy argument similar to that used in Proposition [}, it is not too difficult to show
that for wy,;, sufficiently small, this weighted digraph has principal ratio at least
(Wimax/Wmin)" " 2(n — 2)!. This serves as a lower bound for the maximum principal

ratio in the weighted case.

Acknowledgements: Section of Chapter [4] is based in part on a unpublished
manuscript in preparation, tentatively titled Mazimum hitting time of random
walks on directed graphs; jointly written with Ran Pan. The dissertation author

was the primary author of this work.
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