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The authors are hosting an AMS sponsored Mathematics
Research Community (MRC) focusing on two themes that
have garnered intense attention in network models of com-
plex relational data: (1) how to faithfully model multi-way
relations in hypergraphs, rather than only pairwise inter-
actions in graphs; and (2) challenges posed by modeling
networks with extreme sparsity. Here we introduce and
explore these two themes and their challenges. We hope
to generate interest from researchers in pure and applied
mathematics and computer science.

The Rise of Network Science

Graph theory has been driven by applied questions, from
its apocryphal roots in the Seven Bridges of Konigsberg prob-
lem to modern day network analysis. What had been cast
in its infancy as a collection of recreational puzzles has
evolved into an expansive and diverse discipline. Graph
analyses are now common across nearly all areas of science.
Accordingly, modern graph theory has evolved to engage
methods from probability, topology, linear algebra, math-
ematical logic, computer science, and more.

Relational phenomena involving specific patterns of
linkage between entities can afford natural representations
as graphs. Prime examples are network systems, often mas-
sive, which arise in fields such as molecular biology, so-
cial systems, cyber systems, materials science, infrastruc-
ture modeling (e.g., Figure 1), and high performance com-
puting. As elucidated by Chung in a 2010 Notices article
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Figure 1. Synthetic Texas power transmission network
generated from publicly available! test data.

[Chu10], despite coming from disparate domains, such
networks exhibit “amazing coherence” in their shared em-
pirical properties. Such hallmarks include sparsity (the
number of edges is linear in the number of vertices), the
small world phenomenon (any two vertices are connected
by a short path, local neighborhoods are typically dense),
and heavy-tailed degree distributions (the number of de-
gree k vertices is roughly k=#). Researchers have addressed
fundamental questions surrounding these networks—how
they evolve, which structures are critical to their function,
which graph invariants capture meaningful properties, and
s0 on—in an area commonly referred to as “network sci-
ence” [NBWOG6].

Since Chung's Notices article 12 years ago, the scope
of network science has continued to grow beyond em-
phasizing small-world ubiquity, and into studying richer
classes of mathematical structures that better reflect the nu-
ances of real-world networks. In part due to the increas-
ing widespread availability of complex relational data sets,
researchers have coalesced around a new class of applied
questions where the properties of the relational data are,
in and of themselves, driving the questions.

Relations Beyond Graphs
Over the past several decades, there has been an increas-
ing realization within network science that multi-way in-

teractions can play a critical role in networked systems.
For instance, as highlighted by COVID-19 spread, the

interactions at group gatherings can have a cumulative ef-
fect that can be obscured when reduced to pairwise interac-
tions. In order to faithfully capture these multi-way inter-
actions, it is valuable to move beyond the standard graph
structure consisting of vertices V and edges E C (12/), to the

richer framework of hypergraphs, where the edge set E is a
subset of 2, the power set of V.

Where graphs can represent only pairwise relations na-
tively, hypergraphs naturally code for multi-way interac-
tions. Nonetheless, it is routine to resort to analyzing sys-
tems and data exhibiting multi-way interactions via “aux-
iliary graphs” produced from multi-way data, such as the
line graph (which encodes intersections between pairs of
hyperedges) or the 2-section graph (which replaces hy-
peredges with graph cliques). However, as illustrated by
Figure 2, two non-isomorphic hypergraphs may have the
same line graph. Similarly, two non-isomorphic hyper-
graphs may have the same 2-sections as well. Simply
put, these most natural encodings of hypergraphs by auxil-
iary graphs fail to retain some pertinent information. De-
spite hopes that incorporating weights into the auxiliary
graphs would allow faithful representation of hypergraphs
via graphs, recent work by Kirkland [Kir18] shows that this
is not the case.

And while hypergraphs are bijective to bipartite graphs?
in which one of the parts is labeled as vertices and the other
as edges, naive deployment of graph methods against
them will not necessarily reveal the “set”-valued proper-
ties of the original hypergraph. The resulting algorithms
are at best cumbersome to phrase and study in this frame-
work, and at worst simply recapitulate the corresponding
hypergraph-native methods. Thus, it is apparent that hy-
pergraphs require their own analytical tool set to avoid the
information loss inherent to graph reduction or bipartite
approaches.

Figure 2. Non-isomorphic hypergraphs with the same line
graph.

1[h1:tps ://egriddata.org/dataset/activsg2000-2000-bus|
|-synthetic-grid-geolocated-texas|
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2Technically “bicolored,” there are caveats here in the case of disconnected
hypergraphs.
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While shifting from modeling pairwise to multi-way in-
teractions may seem like a subtle change, the implications
are far-reaching and profound. For example, in a hyper-
graph the natural generalization of a walk of length k is a
sequence ey, ..., e of hyperedges e; € E such that for all
1 <i<k-1wehavee; ne;; # 0. However, unlike
in graphs these pairwise intersections have a non-trivial
notion of “width,” i.e,, |e; Ne;,1|. This allows the set of
hypergraph walks to be partitioned by functions of their
width, such as the minimum or mean width of intersec-
tions. In contrast with graphs, these width-based parti-
tions induce non-trivial filtrations on a set of hypergraph
walks. Since walks are foundational to defining many net-
work science concepts, these filtrations in turn induce fil-
trations on component structure, connectivity, diameter,
centrality, etc., which can be used to provide further in-
sight into the network structure [AJM*20].

Building off this increased expressivity, a number of
analytical tools have been developed to study hyper-
graphs, ranging from walk and centrality based meth-
ods [AJM*20, Ben19], motif and subgraph pattern anal-
ysis [LKS20], and dynamical processes on hypergraphs
[dATM21, LR20].  Additionally, hypergraphs interact
strongly with important structures from computational
topology such as abstract simplicial complexes (hypergraphs
that include all possible subedges), and there is a bur-
geoning movement to join network science to analytical
approaches bridging to these higher-order mathematical
fields [BGHS21,IPBL19].

Challenges of (Hyper)Analytics

Rather than attempt a methods survey, here we discuss
thematic challenges associated with hypergraph spectral
methods that reflect common issues facing hypernetwork
science. Hypergraph Laplacians and associated spectral
methods are commonly used to obtain embeddings, rank
entities, and cluster data across domain areas, ranging
from partitioning circuit netlists in VLSI, grouping term-
document data in natural language processing, and per-
forming image segmentation. How to optimally define
hypergraph matrix and tensor representations to better en-
able such analyses has emerged as a central consideration.

Despite a plethora of proposals over the past several
decades, there is little consensus as to which notion of
hypergraph Laplacian is most appropriate. Furthermore,
such proposals are starkly different, depending on whether
or not one assumes uniformly sized hyperedges. For ex-
ample, in the uniform case, Chung [Chu93] took a ho-
mological approach, Lu and Peng [LP11] introduced a so-
called higher-order generalized Laplacian rooted in hyper-
graph random walks, while Cooper and Dutle [CD12] uti-
lize multilinear-algebraic techniques to study multidimen-
sional arrays they call hypermatrices. Unfortunately, there
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appears to be no obvious way to extend these notions
to non-uniform hypergraphs. Accordingly, these meth-
ods likely have limited applicability to hypergraphs aris-
ing from real data, which are almost always naturally non-
uniform.

While proposed non-uniform hypergraph Laplacians
are applicable to real, messy hypergraph data, whether they
effectively capture higher order structure present in hyper-
graphs but absent in graphs is disputed. As shown by Agar-
wal [ABB06], a number of non-uniform hypergraph Lapla-
cians are related, via trivial shifts and scalings, to graph
Laplacians associated with the auxiliary graphs mentioned
above like the two-section (clique expansion). To mitigate
the information loss inherent in such reductions [Kir18],
one approach is to study hypergraph matrices associated
with non-reversible random walks [CR19, HAPP20], while
other recent work advocates non-uniform hypergraph ad-
jacency tensors [BCM17]. However, these and other
“hypergraph-native” approaches often come with caveats,
underscoring the difficulty of devising practical yet faith-
ful hypergraph methods: in this case, the former approach
requires external weights to be effective, while the high-
dimensionality of the tensor suggested in the latter poses
computational challenges.

Modeling Sparsity

In addition to developing hypergraph analytic tools, net-
work science is also grappling with how to develop models
that capture the unusual combination of extreme proper-
ties exhibited by many complex networks. From the very
first attempts to develop a robust theory of random graphs,
it was recognized that the models being developed were, at
best, imperfect representations of the real world. Indeed,
Erdés and Rényi pointed this out in [ER61]:

“The evolution of random graphs may be considered as
a (rather simplified) model of the evolution of certain
real communication-nets, e.g. the railway-, road- or
electric network system of a country or some other unit,
or of the growth of structures of anorganic or organic
matter, or even of the development of social relations.
Of course, if one aims at describing such a real situa-
tion, our model of a random graph should be replaced
by a more complicated but more realistic model.”

Since then numerous random graph models have been
developed to capture various underlying structural or
mechanistic properties; including approaches to capture
the degree sequence (either exactly or probabilistically),
network self-similarity, structural restrictions, network evo-
lution based on preferences or biological mechanisms,
and others.

Despite the proliferation of random graph models,
there are significant structural features of data for business,

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 289



AMS COMMUNICATION

industrial, and governmental (BIG) applications that still
are not captured. For instance, while many of the net-
works important in BIG applications exhibit both connec-
tivity and extreme sparsity, random graph models typically
require an average degree of Q(log(n)) (for models with
more edge independence) or at least 3 (for models with
less edge independence) in order to ensure connectivity.
However, for systems such as the power grid (see Figure 1)
or networks built from communication traces, connectiv-
ity is present a priori despite an average degree between 1
and 2.

In addition, many BIG applications are driven by experi-
mental data that are essentially correlational in nature. Ex-
amples include correlated gene expression across multiple
experimental conditions or macroscale structural proper-
ties of novel materials across a variety of microscale proper-
ties. These data sources are naturally represented in terms
of a weighted hypergraph, and yet, many of the current
analytical methods applied to these data sources rely on
graph (as opposed to hypergraph) models. While there are
many reasons for this discrepancy, one of the major con-
tributing factors is a relative lack of random hypergraph
models which can be meaningfully parameterized to be
reflective of observed correlational data. While random
bipartite graph models exist, they suffer from the prob-
lems described above. Between the need for connected
random models exhibiting extreme sparsity, the increasing
relevance of hypergraph data sources, and other peculiari-
ties of BIG data sources, there is a significant opportunity
to develop novel random hypergraph models driven by a
new class of applications.

An Invitation

The authors of this article are organizing an AMS MRC in
the summer of 2022 on these topics. We will be explor-
ing the way that graphs and hypergraphs can be employed
in real-world scenarios such as those in biology, computer
science, social science, and power engineering. The goal of
this collaborative workshop is to bring together researchers
from multiple different domains including mathematics,
computer science, and application domains to develop
and extend graph-theoretical concepts that are rooted in
problems of national significance, including:

o In critical infrastructure systems, such as the
power grid or natural gas distribution system, it is
often necessary to understand the combinatorial
structure of the system to understand macroscale
system behavior.

« Computer network data represents point to point
information exchanges such as emails, network
traffic, or process logs. This type of data is fre-
quently modeled as a rapidly changing dynamic
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graph with the goal of discovering behavioral pat-
terns and anomalies in the system.

+ In the case of *-omics data from biology, much
of the data is pairwise, or multi-way, rate of ex-
pression under various environmental conditions.
This naturally leads to a variety of graphical struc-
tures, from directed hypergraphs to undirected
graphs, depending on the choice of data represen-
tation.

+ A key factor in the understanding of the behavior
of microbial communities is the directed graph of
reinforcing interactions, i.e., the presence of mi-
crobe A increases with the increase of microbe B.

+ In blogging and social networks such as Twitter,
users interact with external content by posting
links, thereby forming a user-content hypergraph
whose structure affects information spread.

We invite early-career applicants from all domains to join
us. The most crucial characteristic of the applicants is the
desire to build a community that is willing to teach and
learn about other disciplines and to form true interdisci-
plinary teams. The organizers have identified several deep
theoretical problems and will provide guidance and re-
sources as participants tackle them. In addition to the tech-
nical collaborations, there will be opportunities to learn
about research in the national laboratory system and in
industry, expand networks, and participate in other pro-
fessional development activities. We invite you to apply
and join us in exploring this topic of theoretical interest
and practical significance.
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