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Abstract
Graph eigenvalues play a fundamental role in controlling structural properties which
are critical considerations in the design of supercomputing interconnection networks,
such as bisection bandwidth, diameter, and fault tolerance. This motivates consider-
ing graphs with optimal spectral expansion, called Ramanujan graphs, as potential
candidates for interconnection networks. In this work, we explore this possibility by
comparing Ramanujan graph properties against those of a wide swath of current and
proposed supercomputing topologies. We derive analytic expressions for the spectral
gap, bisection bandwidth, and diameter of these topologies, some of which were pre-
viously unknown. We find the spectral gap of existing topologies is well separated
from the optimal achievable by Ramanujan topologies, suggesting the potential utility
of adopting Ramanujan graphs as interconnection networks.
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1 Introduction

One of the significant challenges in the use of modern cluster-based supercomputers
is efficiently, robustly, and quickly handling the necessary communication between
nodes in the cluster. Both the current and next-generation supercomputer designs use
highly structured network topologies, such as the low-dimensional torus, the flattened
butterfly, or the dragonfly topology in order to have a straightforward routing scheme
while attempting tomitigate the traffic congestion in high communication applications.
However, “preliminary experiments on Edison, a Cray XC30 at NERSC, have shown
that for communications-heavy applications, inter-job interference and thus network
congestion remain an important factor” [12]. Indeed, recent research [55] further
attests to the impact of network structure on performance metrics. In fact, even with a
relatively low utilization (40–50%), communication patterns can cause an exponential
explosion in latency [37]. As a consequence of the interaction between the structure of
internode communication in various classes of algorithms and the underlying network
topologies, certain supercomputers gain a reputation for being more or less suited to
a certain class of problems.

In this regard, the evolution of supercomputing interconnection topologies stands in
contrast to the surprising success of the “evolved” topologyof the Internet. Specifically,
despite having no global design, the Internet structure has unexpectedly [2] ended up
as a robust, general purpose, and relatively low-latency system for its size. In the last
few decades, a consensus has developed that the primary explanation for the good
performance of the Internet topology is that the Internet topology belongs to a class of
graphs known as expanders. That is, if a graph is a sufficiently high-quality expander,
then there exist efficient, distributed, online, local, and low-congestion algorithms to
route information among the vertices of the graph [7,21,26,29,38,64].

This view point leads naturally to considering optimal expanders, known as
Ramanujan graphs, as potential supercomputing topologies. In this work, we explore
the potential benefits of adopting Ramanujan graphs by conducting an analysis of
current and proposed supercomputing topologies. The paper is organized as follows:
In Sect. 2, we provide the necessary preliminaries on spectral graph theory, as well as
survey results showing eigenvalues control a number of critical properties pertinent
to interconnection design, such as bisection bandwidth, diameter, and fault tolerance.
Second, in Sect. 3 we define the Ramanujan property of graphs and review explicit
constructions of Ramanujan graphs. In Sect. 4, we survey variety of supercomput-
ing topologies and derive analytic expressions for their spectral expansion, bisection
bandwidth, and diameter. Across the topologies surveyed, we find some or all of these
properties are well separated from those of Ramanujan topologies. Consequently, our
results suggest transition to Ramanujan topologies may have the potential to signifi-
cantly improve metrics for facility of communication.

2 Preliminaries

Before proceeding with our discussion of expanders and Ramanujan graphs, we first
recall some relevant terminology and results from graph theory. A graph G = (V , E)
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Fig. 1 How eigenvalues are obtained from a graph is represented by the solid lines. Spectral graph theory
analyzes eigenvalues to deduce properties of the graph, represented by the dashed line

is a set of vertices V edges E , where each edge is an unordered pair of vertices. The
number of edges incident to a vertex is called its degree; if every vertex has degree
k, the graph is called k-regular. Spectral graph theory is the study of eigenvalues
and eigenvectors of matrices associated with graphs. The adjacency matrix A of an
n-vertex graph is an n × n matrix where

Ai j =
{
1 if {i, j} ∈ E

0 otherwise
.

As A is symmetric, its eigenvalues are real, which we denote

λ1 ≥ λ2 ≥ · · · ≥ λn .

For a connected graph, the largest eigenvalue λ1 = k if and only if the graph is k-
regular; furthermore, if G is connected, λ1 − λ2 > 0, and the quantity λ1 − λ2 is
referred to as the spectral gap of G.

Two other graph matrices whose spectra are often studied are the Laplacian matrix
L = D − A and normalized Laplacian matrix L = D−1/2LD−1/2, where D denotes
the diagonal matrix with the vertex degrees on the diagonal. Unlike the adjacency
matrix, both of these matrices are necessarily positive semi-definite, and their spectra
characterize a number of properties which are not captured by adjacency eigenvalues.
Due to its intimate connection to randomwalks and stochastic processes on graphs, the
normalized Laplacian matrix is perhaps the most appropriate matrix for characterizing
expansion properties of graphs, particularly for irregular graphs.However, we note that
if a graph G is k-regular (as is the case for a number of supercomputing topologies),
thenL = I − 1

k A, fromwhich it is clear that the spectra of all three matrices are related
by trivial shifts and scalings by k (and hence functionally the same). We denote the
spectrum of the Laplacian matrix L by

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρn,

and that of the normalized Laplacian L by

0 = μ1 ≤ μ2 ≤ · · · ≤ μn ≤ 2.
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We give an example of a graph, its normalized Laplacian, and associated eigenvalues
in Fig. 1. As we will later see, the eigenvalues λ2, ρ2, and μ2 play a critical role in
controlling expansion properties and defining Ramanujan graphs. In particular, the
eigenvalue ρ2 is called the algebraic connectivity of a graph. Due to its prevalence in
the literature (see, for instance, [13,16,30]), we will choose to present our results in
terms of this spectrum, keeping in mind that if G is k-regular, then

ρ2 = k · μ2 = k − λ2.

Before proceeding, we describe the spectra of two graphs: the path and the cycle
graph. We highlight these graphs as they are frequently elemental to the design of
fundamental topologies (e.g. the torus, mesh, and hypercube are all obtained via graph
products of cycles or paths). Unsurprisingly, their spectra are highly structured.

• The path of length n−1, denoted Pn , has n−1 edges and n vertices and adjacency
spectrum

2 cos

(
π j

n + 1

)
for j ∈ {1, . . . , n} .

• If the path of length n − 1 is modified to add self-loops at each of the endpoints,
denoted P ′

n , the adjacency spectrum becomes

2 cos

(
π j

n

)
for j ∈ {0, . . . , n − 1} .

• The cycle of lengthn, denotedCn , hasn edges and vertices and adjacency spectrum

2 cos

(
2π j

n

)
for j ∈ {0, . . . , n − 1} .

Finally, we use standard asymptotic notation: a function f (n) = O(g(n)) if for
all sufficiently large values of n there exists a positive constant c such that | f (n)| ≤
c · |g(n)|; similarly, we write f (n) = Ω(g(n)) if g(n) = O( f (n)), and f (n) =
Θ(g(n)) if both f (n) = O(g(n)) and f (n) = Ω(g(n)). Lastly, f (n) = o(g(n)) if
limn→∞ f (n)

g(n)
= 0.

2.1 Network properties

Graph eigenvalues are deeply related to a number of fundamental network properties.
In the case of supercomputing topologies, two such properties linked to commu-
nications performance are graph diameter and bisection bandwidth. Diameter (the
maximum distance between vertices) is critical for latency, while bisection band-
width (the minimum number of edges crossing a balanced bipartition of the vertices)
measures the networks “bottleneckedness,” impacting all-to-all communication per-
formance.
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A plethora of work has shown both of these core network properties to be bounded
and thus controlled by graph eigenvalues [20]. In particular, the eigenvalues of interest
are the spectral gap, the difference in the largest two adjacency eigenvalues, or the
algebraic connectivity, the second smallest Laplacian eigenvalue. For example, Alon
andMilman [8] showed that the diameter is at most roughlyC ·log n, whereC depends
on algebraic connectivity and the maximum degree. More precisely,

Theorem 1 [8] Let G be an n-vertex graph with algebraic connectivity ρ2 and maxi-
mum degree Δ. Then

diam(G) ≤ 2

⌈√
2Δ

ρ2
log2 n

⌉

A lower bound on graph diameter in terms of algebraic connectivity may also be
obtained. For example, McKay [48] showed diam(G) ≥ 4

nρ2
. In addition to these

bounds on the maximum distance between vertices, average distance is upper and
lower bounded in terms of algebraic connectivity aswell; see [48]. Next, algebraic con-
nectivity provides guarantees on minimum bisection bandwidth, as shown by Fiedler
[24].

Theorem 2 [24] Let G be an n-vertex graph with algebraic connectivity ρ2 and
bisection bandwidth BW(G). Then

BW(G) ≥ ρ2n

4
.

By considering Cheeger’s inequality [39,59], one can also obtain upper bounds on
the bisection bandwidth in terms of ρ2 for regular graphs.

Theorem 3 For a connected k-regular, n-vertex graph G with algebraic connectivity
ρ2, the bisection bandwidth satisfies

BW(G) ≤
√
2kρ2 · kn

2
.

We note that when ρ2 is large this upper bound is quite loose. In fact, if G has
m edges, an easy application of the first moment method [9] shows the bisection
bandwidth is at most m2 . Note that ifG is k-regular and ρ2 is asymptotically k, then this
first moment calculation shows that Theorem 2 is essentially tight and the bisection
bandwidth is kn

4 (1 + o(1)). Consequently, it can be shown that Ramanujan graphs
(defined in Sect. 3) have nearly optimal bisection bandwidth among all k-regular
graphs.

Lastly, we note that algebraic connectivity provides bounds on edge and vertex
connectivity, the minimum number of edges and vertices that must be deleted in
order to disconnect the graph, respectively. In the context of computer interconnection
networks, vertex connectivity is often referred to as fault tolerance (e.g., [5]); more
precisely, fault tolerance is defined as one less than vertex connectivity. Denoting
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vertex and edge connectivity as κ(G), κ ′(G), respectively, it is obvious that κ(G) ≤
κ ′(G) ≤ Δ(G). Fiedler [24] proved

κ(G) ≥ ρ2,

and hence, larger algebraic connectivity guarantees more robust fault tolerance. For
more spectral bounds on vertex and edge connectivity, the reader is referred to [4] and
for further a more complete survey of the relationship between algebraic connectivity
and numerous graph invariants, see [49]. Such spectral bounds have practical utility:
for a number of graph topologies, exact diameter, bisection bandwidth, etc. may be
unknown or difficult to compute, and hence, eigenvalues may serve as a proxy. In
summary, the bounds we’ve reviewed motivate algebraic connectivity as a key param-
eter of interest intimately related to a plethora of structural properties important to
interconnection network design. In the next section, we define graphs with optimal
spectral gap, known as Ramanujan graphs, and discuss their expansion properties.

3 Ramanujan graphs

Ramanujan graphs are regular graphs with nearly optimal expansion properties.
Loosely speaking, expansion means that every “not too large” set of vertices has a
“not to small” set of neighbors. One way of measuring such expansion is the vertex
isoperimetric number of a graph, given by

h(G) = min
X⊆V (G)

2|X |≤|V (G)|

|∂X |
|X | ,

where ∂X denotes the neighbors of vertices in X that are not in X . We illustrate
examples of vertex isoperimetric ratios of sets in Fig. 2. This notion of expansion, as
well as others such as the edge isoperimetric constant, has been shown to be intimately
related to the second largest adjacency eigenvalue of a graph. For example, Tanner
[61] proved a lower bound on h(G) in terms of this eigenvalue λ2, for a k-regular
graph; namely,

h(G) ≥ 1 − k

2k − 2λ2
.

Conversely, Alon and Milman [8] proved an upper bound on λ2 in terms of h(G):

k − λ2 ≥ h(G)2

4 + 2 · h(G)2
.

Putting these twobounds together, it is clear that smaller values ofλ2 yield larger values
of h(G) and hence better expansion. Other bounds, such as Cheeger’s inequality and
Buser’s inequality [18], similarly tie eigenvalues to other notions of expansion, like
the Cheeger constant. Given the breadth of expansion properties reflected through
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(a) (b)

Fig. 2 Examples of a vertex set X , in red, with vertex boundary ∂X , in green. For a, the set has vertex
isoperimetric ratio 4. For b, this ratio is 2/3, which is the minimum over all subsets whose size doesn’t
exceed half the vertices, and thus is the graph’s vertex isoperimetric number (color figure online)

eigenvalues, it is natural to measure expansion directly in terms of the spectra itself.
Accordingly, researchers have sought spectral expanders, families of graphswith small
λ2. The most well-known such family is called Ramanujan graphs.

Definition 1 A k-regular graph G is called Ramanujan if

λ(G) ≤ 2
√
k − 1,

where λ(G) denotes the largest magnitude adjacency eigenvalue ofG not equal to±k.

Ramanujan graphs are, in a sense, optimal spectral expanders since they achieve
the asymptotic theoretical minimum given by Alon–Boppana theorems. The Alon–
Boppana theorem [6,51] states that for a k-regular graph with second largest (in
magnitude) adjacency eigenvalue λ and diameter D, we have

λ ≥ 2
√
k − 1

(
1 − 2

D

)
− 2

D
.

As an immediate corollary, if (Gi )
∞
i=1 is a family of connected, k-regular, n-vertex

graphs with n → ∞ as i → ∞, then

lim inf
i→∞ λ(Gi ) ≥ 2

√
k − 1.

Hence, we see that Ramanujan graphs attain the theoretical asymptotic optimum spec-
tral expansion. While the Alon–Boppana theorem pertains to regular graphs, variants
of the theorem have been proposed for the case of irregular graphs, see [19,33,67].

As a consequence of their optimal spectral expansion, Ramanujan graphs possess
beneficial structural properties via the bounds mentioned in Sect. 2. In particular, not
only does the Ramanujan property guarantee at least nearly optimal bisection band-
width, but also controls the number of edges between any collection of vertices, not just

123



S. G. Aksoy et al.

bisections. This stronger property is known as the discrepancy property [21]. Specif-
ically, using tools of spectral graph theory, if G is an n-vertex k-regular Ramanujan
graph, we have that for any two sets of vertices X and Y ,

∣∣∣∣e(X ,Y ) − k

n
|X | |Y |

∣∣∣∣ ≤ 2
√
k − 1

n

√|X | (n − |X |) |Y | (n − |Y |),

where e(X ,Y ) is the number of edges between the sets X and Y . Roughly speaking,
this says that in any Ramanujan topology the number of edges between two sets scales
roughly like the expected number of edges between two sets in a similarly dense
random graph. In particular, if a process is active on αn fraction of the nodes of the
supercomputing topology, then bisection bandwidth on the active nodes is at least

αkn

2

(
α

2
− 2

√
k − 1

k

(
1 − α

2

))

independently of which αn nodes are chosen.

3.1 Ramanujan constructions

Providing explicit constructions of Ramanujan graphs is challenging. The first explicit
constructions of Ramanujan graphs were given by Lubotzky, Phillips, and Sarnak [42],
as well as independently by Margulis [45]. Both constructions are Cayley graphs that
rely heavily on number-theoretic methods; indeed, the name “Ramanujan graph” was
derived due to the application of the Ramanujan–Petersson conjecture from number
theory in the aforementioned construction [42]. Below, we briefly describe and com-
pare some of these constructions.

3.1.1 Lubotzky, Phillips, Sarnak construction

Definition 2 (LPS Graphs) The LPS graph X p,q is a (q + 1)-regular Cayley graph,
defined for distinct primes p and q such that p, q ≡ 1 (mod 4). Letting i be any
integer such that i2 ≡ −1 (mod p), the generating set S of X p,q is given by

S =
{[

α0 + iα1 α2 + iα3

−α2 + iα3 α0 − iα1

] ∣∣∣∣ (α0, α1, α2, α3) is a solution of α2
0 + α2

1 + α2
2 + α2

3 = q,

α0 > 1 is odd, and α1, α2, α3 are even.

}
,

and the group G of X p,q is

G =
⎧⎨
⎩
PSL(2,Fp) if

(
q
p

)
= 1

PGL(2,Fp) if
(
q
p

)
= −1

,

where (
q
p ) is the Legendre symbol.
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We note that in the former case, the Cayley graph of PSL(2,Fp) with generating

S has p(p2−1)
2 vertices and is non-bipartite, while in the latter case, the Cayley graph

of PGL(2,Fp) with generating set S is bipartite with p(p2 − 1) vertices.
Using advanced number-theoretic techniques, Lubotzky, Phillips, Sarnak showed

their construction has largest nontrivial adjacency eigenvalue at most 2
√
q and hence

is Ramanujan. Additionally, they also showed their construction has other extremal
combinatorial properties, such as having girth (i.e., the length of the shortest cycle) of
Ω(logq n). From a computational standpoint, the LPS construction allows for explicit
querying of vertex neighborhoods, which is a desirable property for analyzing expo-
nentially large graphs.

The LPS construction may be used to generate infinite families of (q + 1)-regular
Ramanujan graphs, however, only forq primewithq ≡ 1 (mod 4) and n as function of
p as given above. That is, despite having outstanding properties, the LPS construction
is limited to Ramanujan graphs only of a certain degree—and for each such particular
degree, only to a certain number of vertices n. In 1994, Morgenstern [50] partially
ameliorated this restriction by extending the LPS construction to accommodate any
prime power q, while showing this extended construction is still Ramanujan and
satisfies all other combinatorial properties of the LPS graphs. Nonetheless, this still
left open the general case of a given degree k and size n.

3.1.2 Marcus, Spielman, Snivrasta construction

In 2013 and 2015, Marcus, Spielman, Snivrasta gave new constructions of Ramanujan
graphs using a new technique called the method of interlacing polynomials. Unlike the
LPS construction, Marcus, Spielman, and Snivrasta’s first construction [43] is valid
for any given degree k, and second construction [44] is valid both for any k and number
of vertices n. In both cases, their constructions can only be used to generate bipartite
Ramanujan graphs.

While their interlacing family method implicitly suggests an algorithm to find an
MSS graph, such an algorithm would require computing partially specified expected
characteristic polynomials, forwhich no knownpolynomial time algorithms are known
[23]. However, in [23], Cohen provided a polynomial time algorithm for computing
such polynomials, thereby giving a deterministic algorithm that, for given degree k
and even positive integer n, returns a bipartite Ramanujan graph, according to the
construction given in [44], in polynomial time.

3.2 Related work in high-performance computing

Due to the aforementioned relationships between graph expansion and other properties
important in network design, many proposed HPC network topologies consider graph
expansion implicitly, making a comprehensive review of related work difficult. Before
proceeding, we briefly survey related work that explicitly considers Ramanujan graphs
or related expanders as network topologies in contexts pertinent to supercomputing.
Perhapsmost notably, in the context of datacenter architecture design, Valadarsky et al.
[63] propose “Xpander,” which utilizes LPS graphs and the theory of graph lifts [14].
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They evaluate Xpander theoretically, via simulation, and using a network emulator,
finding that Xpander outperformed traditional data center designs; see [1] for more.
In the early 1990s, Upfal [62] applied the theory of (α, β, n, d)-expander graphs to
construct so-called multibutterfly networks. Later, Brewer, Chong, and Leighton [15]
proposed a hierarchical expander construction, as ameans tomitigate wiring complex-
ity; they analyzed the fault tolerance of their so-called metabutterfly topology through
simulation against the aforementionedmultibutterfly. In optical network design, Paturi
et al. [52] proposed using expander graphs to interconnect processors and subsequently
analyze parallel algorithms for sorting, routing, associative memory, and fault toler-
ance. Lastly, in the context of sensor networks, Kar and Moura [36] propose using
Ramanujan LPS graphs as communication networks supporting distributed decision
making and test their performance on the convergence speed of distributed consensus.

4 Spectral gap in supercomputing topologies

Here, we survey a variety of supercomputing topologies. In addition to giving for-
mal, and in some cases new or generalized, descriptions of the underlying graphs,
we focus on analyzing their spectral gap, bisection bandwidth, and diameter. We first
consider grid-like and grid variant topologies: the hypercube, generalized grid, torus,
butterfly, Cube-Connected Cycles, and Data Vortex. Then, we consider several miscel-
laneous topologies: the CLEX, DragonFly, G-connected-H , and SlimFly topologies.
Our results on algebraic connectivity and bisection bandwidth are summarized in Table
1.

Before proceeding, we first establish a key algebraic tool that we utilize frequently,
allowing us to compute subsets of a given graphs spectra through that of a simpler,
“reduced” graph.

Lemma 1 (Reduction Lemma) Let G be a graph and let Γ be a subgroup of Aut(G),
the automorphism group of G. Let H be a weighted, directed, looped graph with
vertex set given by the orbits of Γ over G and where the weight of edge from orbit σ
to orbit τ is the total weight of an arbitrary vertex v in the orbit σ to the orbit τ . The
spectrum of H is a subset of the spectrum of G. Furthermore, any eigenpair (λ, v) of
G such that λ is not an eigenvalue of H has the property that v sums to zero along
orbits of Γ .

Proof Let (λ,w) be a right eigenpair of H . We define the vector wΓ as follows: for
any vertex v in G, define eTv wΓ = eTσ w where σ is the orbit containing v. Now let S
be the collection of orbits and suppose v is in orbit τ . We then have that

eTv AGwΓ =
∑
j

eTv AGe j e
T
j w

Γ

=
∑
σ∈S

∑
j∈σ

eTv AGe j e
T
j w

Γ

=
∑
σ∈S

∑
j∈σ

eTv AGe j e
T
σ w
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Fig. 3 An application of the reduction lemma to the fat tree

=
∑
σ∈S

eTτ AHeσ e
T
σ w

= λeTτ w

= λeTv wΓ .

As v is arbitrary, we have that λ is also an eigenvalue of G.
Now suppose that (λ, v) is an eigenpair for G and consider vΓ =∑σ∈Γ vσ . Since

each σ is an automorphism ofG, vσ is also an eigenvector with eigenvalue λ. Thus, vΓ

is either an eigenvector with eigenvalue λ or it is the zero vector. Since vΓ is constant
over orbits of Γ , we can form vΓ

H as the vector of values over orbits. It is clear that
AHvΓ

H = λvΓ
H and so either λ is in the spectrum of H or vΓ

H is zero and v sums to
zero over orbits of Γ . �

We illustrate an application of the Reduction Lemma to a fat tree topology in Fig.
3. We note that the Reduction Lemma is almost certainly not new. In fact, it can be
viewed as a special case of several other results on describing the interlacing of spectra
of a matrix with a quotient matrix, see, for instance, [17, Chapter 1] and [16, Chapter
2].

It is worth noting that several topologies we will consider have implementations
which have minor irregularities in the node radixes. These deviations from regularity
have little effect on the true performance of the network, and so we will add self-loops
as needed to eliminate irregularity and simplify the analysis. This will not change the
nature of any of our results as the bisection bandwidth and diameter both are unaffected
by arbitrary self-loops.

4.1 Product (grid-like) topologies

For a number of high-dimensional supercomputing topologies, their underlying graphs
can be obtained via repeated graph products. Product graphs are highly structured and
possess properties which can sometimes be tightly controlled by those of their factor
graphs. Below, we briefly describe three such topologies: the hypercube, torus, and
generalized grid. These graphs are obtained via a particular graph product called the
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Cartesian product, denoted G � H . The graph G � H is on vertex set V (G) × V (H)

and is defined by the edge condition: (u, u′) and (v, v′) are adjacent if and only if
either

• u = v and {u′, v′} ∈ H , or
• u′ = v′ and {u, v} ∈ G.

We note that the adjacency matrix of G � H can be written succinctly in terms of
those of G and H ,

AG�H = AG ⊗ I + I ⊗ AH ,

where I denotes the identitymatrix and⊗ denotesKronecker product. Using the above
characterization, it is easy to show that the adjacency (or Laplacian) eigenvalues of
AG�H consists of λ(G)i + λ(H) j over all 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ |V (H)|;
hence, the d-fold Cartesian product eigenvalues consist of all possible d-sums of the
factor graph eigenvalues. In particular, the algebraic connectivity of G � H is the
minimum of the algebraic connectivity of G and the algebraic connectivity of H .

Definition 3 (Hypercube, Qd ) The d-dimensional hypercube, Qd , is on n = 2d ver-
tices, defined by the d-fold Cartesian product P2 � · · · � P2, where P2 is the path with
1 edge.

It is well known that Qd has algebraic connectivity of 2 and bisection bandwidth
2d−1 = n/2. The hypercube is a special case of the generalized grid graph, defined
below.

Definition 4 (Generalized Grid, Gk1,...,kd ) The d-dimensional, generalized grid the
d-fold Cartesian product Pk1 � · · · � Pkd , where Pki is the path of length ki − 1.

We note that taking d = 2, k1 = m, and k2 = n yields what is sometimes simply
referred to as a grid graph, or m × n lattice, while taking k1 = · · · = kd = 2
yields Qd . Using the aforementioned fact relating the Cartesian product eigenvalues
to those of the factor graphs, it is easy to see the algebraic connectivity of Gk1,...,kd is
2 − 2 cos(π/max{k1, . . . , kd}). Finally, we define the discrete torus topology, which
is given by the cartesian product of cycles.

Definition 5 (Torus, Cd
k ) The discrete torus C

d
k is the d-fold graph box product of a

k-cycle, i.e., Ck � · · · � Ck . This graph is regular on n = kd vertices and has degree
2d.

It is not difficult to show the algebraic connectivity of the torus Cd
k is 2(1 −

cos(2π/k)).

4.2 Grid variants

The collection of topologieswe consider in this section are closely related to topologies
formed from the product operation, butwithminor twists ormodifications.Oftentimes,
these topologies start from some grid-like layout and permute the connections or add
small substructures to achieve desired properties.
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4.2.1 Butterfly

One of the more well-known grid variants is the Butterfly topology [40]. In its most
simple form the Butterfly topology consists of a series of shuffling layers based on
the binary representation of the node names. More concretely, there are p log2(p)
switches arranged in a log2(p)-by-p array of p switches in one of log2(p) ranks. For
each rank, each of the p switches is connected to two switches in the previous rank
and two switches in the next rank. The nodes in rank i and position j are connected
to the switch j and switch m in rank i − 1, where m is formed by flipping the i th bit in
binary representation of j . It is also connected to switch j and m′ in rank i + 1, where
m′ is formed by switching the (i + 1)st bit in j . The Butterfly topology has diameter
log2(p) and bisection width p/2

Definition 6 (Butterfly, Butterfly(k, s)) The k-ary, s-fly Butterfly network where there
are s-layers of switches, and each switch has k “forward” connections. More con-
cretely, the switches can be indexed by elements of [s] × [k]s . The “forward”
connections from (i, (a1, . . . , as)) to (i + 1, (a′

1, . . . , a
′
s)) are formed by keeping

all but the i th component of a fixed, i.e. a j = a′
j if j �= i . Depending on the applica-

tion, the s layers can either be connected linearly (no connection from layer s to layer
1), or cyclically (connection from layer s to layer 1). For convenience, we will restrict
ourselves to the cyclic arrangement.

It is straightforward to see that these networks have a diameter of s by considering
two elements in the same layer, (i, a) and (i,b), where no coordinate of a and b agrees.

Proposition 1 Let G be a k-ary, s-fly Butterfly network. The bisection bandwidth of
G is at most (k+1)ks

2 , and the algebraic connectivity is at most 2k − 2k cos
( 2π

s

)
.

Proof To upper bound the bisection bandwidth, we first consider the case where k is
even anddefine X = [ k2 ]×[k]s−1. Thebipartitionweconsider is then ([s]×X , [s]×X).
In order for (s, x) ∈ [s] × X and (s, x ′) ∈ [s] × X to be adjacent, it must be the case
that

{
s, s′} = {1, 2} and x and x ′ differ only in the first coordinate. This gives that

e([s] × X , [s] × X) = 2
( k
2

)2
ks−1 = ks+1

2 .
When k is odd, we construct a slightly more complicated partition. In particular,

for 0 ≤ i ≤ s − 1 define Xi = { k+1
2

}i × [ k−1
2

]× [k]s−1−i and let X =⋃i Xi . Note
that

|X | =
s−1∑
i=0

|Xi | = k − 1

2

s−1∑
i=0

ks−1−i = k − 1

2

ks − 1

k − 1
= ks − 1

2
.

In particular, ([s] × X , [s] × X) is a bipartition of the vertex set of the k-ary, s-fly
Butterfly network. Now to evaluate the bisection bandwidth we wish to count pairs
(u, v) ∈ Xi × X such that u and v differ in precisely one component. If we fix
some xi ∈ Xi , then for all 1 ≤ j ≤ i + 1, modifying the j th component to be
in k+3

2 , . . . , k yields such a pair. We note that modifying any entry j > i + 1 will
preserve membership in Xi . Thus, the only remaining case to consider is when index
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(i + 1) is modified to have value k+1
2 . This takes us outside the set X if and only if

xi /∈ { k+1
2

}i × [ k−1
2

]× { k+1
2

} j × [ k−1
2

]× [k]s−2−i− j for some 0 ≤ j ≤ s − 2 − i .

As there are k−1
2

ks−i−1+1
2 such terms xi , this gives that the total number of pairs

(u, v) ∈ Xi × X which differ by exactly one component is given by

( k−1
2

)
ks−i−1(i + 1)

( k−1
2

)+ ( k−1
2

) ( ks−i−1+1
2

)
= (k−1)

(
(i+1)ks−i−iks−i−1+1

)
4 .

Thus, the bisection bandwidth is at most

s−1∑
i=0

2
(k − 1)

(
(i + 1)ks−i − iks−i−1 + 1

)
4

= s(k − 1)

2
+ k − 1

2

s−1∑
i=0

(i + 1)ks−i − iks−i−1

= s(k − 1)

2
+ k − 1

2

(
ks + 2

ks − k

k − 1
− (s − 1)

)

= k − 1

2
+ ks+1 − ks

2
+ ks − k

= ks+1 + ks − k − 1

2
.

To upper bound the algebraic connectivity, we note that there is an automorphism
group of the Butterfly topology in which the orbits are given by the layers. Thus, by
applying the reduction lemma to this automorphism group we get an s-cycle with edge
multiplicity k. The bound on the algebraic connectivity then follows immediately. �

4.2.2 Data Vortex

The Data Vortex topology was designed as a “streaming” topology with the idea that
all of the data is constantly in motion (i.e., it is never buffered) and the data swirls from
processors in the outer ring of the vortex toward the processors on the inside of the
topology [31,58]. This streaming methodology has allowed the Data Vortex topology
to handle the transmission of high volumes of data without suffering from significant
congestion-related performance degradation (see [27,28,34,66] for a more in-depth
discussion of the performance benefits of the Data Vortex topology.). Formally, the
topology is defined a series concentric cylinders with “angular” transitions between
them. Within the cylinders, there is a switching topology reminiscent of the layers of
the 2-ary Butterfly topology. More concretely, we have:

Definition 7 (Data Vortex, Data Vortex(A,C)) The Data Vortex topology with param-
eters A,C is a graph with vertex set ZA × ZC × Z

C−1
2 and edge set given by:
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1. for all (a, c, h) ∈ ZA × ZC × Z
C−1
2 there is an edge to (a + 1, c + 1, h),

2. for all (a, c, h) ∈ ZA × (ZC − {0}) × Z
C−1
2 there is an edge to (a + 1, c, h + ec)

where ec denotes the unit vector for the cth component of ZC−1
2 , and

3. for all (a, c, h) ∈ ZA×{0}×Z
C−1
2 there is an edge to (a+1, c, h) = (a+1, 0, h).

Although the Data Vortex is designed as a streaming topology (and is in particular,
indirect), wewill consider it as a direct topology inwhich each node denotes a compute
node.

Proposition 2 The algebraic connectivity of the Data Vortex topology with A angles

and height H is at most min
{
2 − 2 cos

(
π
C

)
, 2 − 2 cos

( 2π
A

)} = O
(

1
max{A2,(C−1)2}

)
.

Furthermore, the bisection bandwidth is at most A2C−2.

Proof We begin by first noting that the vertices in the outer and inner ring of the Data
Vortex have degree 3, so we will consider the topology formed by adding a self-loop
to each of these vertices. Alternatively, we could add an edge between corresponding
vertices in the inner and outer ring by observing that in typical use cases these vertices
are connected to a common system, forming the “input” and “output” ports of the
system.However, thismodification results in essentially the same asymptotic behavior,
so we choose the self-loop modification as it is requires no assumptions about how
the Data Vortex interacts with the processing layer of the overall system.

Wefirst consider the bisection bandwidth by separating the vertices based on height,
specifically partitioning into vertices of height 1, . . . , 2C−2, and those of height 2C−2+
1, . . . , 2C−1. Clearly, this is a bisection. As no edge between concentric rings changes
height, it suffices to consider only those edges internal to a ring. However, as only one
ring flips the leading bit of the height vector, this gives that the bisection bandwidth
is at most A2C−2.

In order to bound the algebraic connectivity, we will apply the reduction lemma.
Specifically, we consider the automorphism group generated by the bit-flip operations
on the height. As these act uniformly on the height, the edges between successive
rings are clearly preserved. Further, as the bit-wise differences are preserved by the
bit-flip operations, this preserves edges on each ring. Under this automorphism group,
the Data Vortex topology reduces to CA � P ′

C where P ′
k is the k-vertex path with loops

at each end. The result bounding the algebraic connectivity follows immediately. �

4.2.3 Cube-Connected Cycles

Loosely speaking, the Cube-Connected Cycles (CCC) graph consists of a hypercube
in which each vertex has been replaced by a cycle. Preparata and Vuillemin [54]
proposed the Cube-Connected Cycles as a versatile network topology for connecting
processors in a parallel computer, which emulates the robust connectivity properties
of the hypercube, but (due to the cycle modification) only requires three connections
per processor. They conclude that “by combining the principles of parallelism and
pipelining, the CCC can emulate the cube-connected machine and shuffle-exchange
network with no significant degradation in performance.”
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As suggested in [56], CCC graph is a special case of a more general graph con-
struction in which an arbitrary graph is connected in a hypercube structure. More
precisely,

Definition 8 (Cube-Connected Cycles, CCC(d)) The d-dimensional cube-connected
graph of a given graph G, denoted CC(G, d), has vertex set V (G)×{0, 1}d and edge
condition (vi , x) ∼ (v j , y) if and only if

• vi ∼ v j in G, or
• vi = v j and the hamming distance between x and y is 1.

TakingG = Cd yields thewell knownCube-ConnectedCycles graph. Riess, Strehl,
and Wanka proved the following result, which relates the characteristic polynomial of
CC(G) to those of loop-weighted variants of G:

Theorem 4 (Riess et al. [56]) Let G be an d-vertex graph. For s = (s1, . . . , sd) ∈
{−1, 1}d and let G[s] denote the graph obtained from G by adding a loop of weight
si to each vertex i . Then,

χ(CC(G, d)) =
∏

s∈{−1,1}d
χ(G[s]),

where χ(G) denotes the characteristic polynomial of the adjacency matrix of G.

As an immediate consequence, we have that the spectral set of CC(G, d) is the
union of the spectral sets of G[s] over all s ∈ {−1, 1}d . Using their result, we can
derive good estimates of the spectral expansion of the CCC. To do so, we first prove
the following lemma.

Lemma 2 Let G be a connected, n-vertex graph. The second largest adjacency eigen-
value of CC(G, d) is the maximum eigenvalue of G[s∗], where s∗ = (s1, . . . , sd) ∈
{−1, 1}d is such that for some fixed j ∈ [n], s j = −1 and for all other i �= j , si = 1.

In the proof of Lemma 2, we will use the following basic fact:

Fact 1 Let G be a connected, n-vertex graph. Let r, t ∈ {−1, 1}d , r �= t , be such that
r agrees with t on any i ∈ [n] where ti = 1, and let i1, . . . , ik ∈ [n] denote indices
on which they differ, i.e., where ti j = −1 and ri j = 1 for j ∈ [k]. Then, the largest
adjacency eigenvalue of G[r] is strictly greater than that of G[t].
Proof Let A and A′ denote the adjacency matrices of G[r] and G[t], respectively,
and let x = (x1, . . . , xn) denote the normalized, dominant eigenvector of A′ + I ,
whose entries are all positive by the Perron–Frobenius theorem. By definition, we
have xT (A + I )x − xT (A′ + I )x = 2

∑k
j=1 x

2
i j

> 0. �
Proof (Proof of Claim 2)

From Theorem 4 and Fact 1, we have that the largest adjacency eigenvalue of
CC(G, d) is that of G[1d ] and furthermore that if 1d �= t ∈ {−1, 1}d does not satisfy
the property in the claim, then there exists some s that does, which we denote s∗, such
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that λ1(G[t]) < λ1(G[s∗]). So, let G and G ′ denote G[1d ] and G[s∗], respectively,
on vertex set {v1, . . . , vn}, where v j denotes the vertex in G[s∗] with a loop of weight
−1. Labeling the adjacency eigenvalues λ1 ≥ · · · ≥ λn , all that remains to show is
that

λ2(G) < λ1(G
′). (1)

By Cauchy’s interlacing theorem, if we delete v j from G and G ′, we have

λ2(G) ≤ λ1(G\v j ) ≤ λ1(G),

λ2(G
′) ≤ λ1(G

′\v j ) ≤ λ1(G
′).

But since G\v j = G ′\v j , combining the above inequalities yields

λ2(G) ≤ λmax(G\v j ) ≤ λ1(G
′).

To see the inequality in (1) is strict, assume for contradiction that λ1(G ′\v j ) = λ1(G ′).
Then, if x = (x1, . . . , x j , . . . , xn) denotes the dominant eigenvector of A′ associated
with λ1, this implies if we set x j = 0, the vector (x1, . . . , 0, . . . , xn) is still an eigen-
vector of G ′ associated with λ1. But applying the Perron–Frobenius theorem to A′ + I
yields that the dominant eigenvector of A′ + I (and hence that of A′) is unique and
has all entries positive, which is a contradiction. �

Using Lemma 2, we have:

Proposition 3 The algebraic connectivity of the d-dimensional, Cube-Connected

Cycles is at most on the order of 2
(
1 − cos

(
π

d+2

))
.

Proof By Lemma 2, it suffices to consider the largest adjacency eigenvalue λ1 of the
d-cycle with one loop of weight −1 on one vertex, and loops of weight 1 on other
vertices. Letting A′ denote this graphs adjacency matrix, a routine calculation shows

that for x = (x1, . . . , xn) defined by xi = sin
(

π i
d+2

)
,

λ1(A
′) ≥ 〈x, A′x〉

〈x, x〉 = 2 cos

(
π

d + 2

)
+ 1 +

sin2( π
d+2 )

(
2 cos( π

d+2 ) − 2
)

d+1
2 + cos( 2π

d+2 )
.

We note that above expression is strictly larger than the second largest adjacency
eigenvalue of the d-cycle with all loops of weight 1, for d ≥ 2. �

It is worth mentioning that the cube-connected graphs are really a specific instance
of a more general technique of constructing supercomputing topologies, which we
refer to as G-connected-H . As the generic G-connected-H topologies are not grid-
like topologies, we will defer their discussion to Sect. 4.3.2.
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4.3 Miscellaneous

In this section, we consider a few topologies that do not (necessarily) have a strong
grid structure. Typically, these topologies have some sort of recursive or multi-layer
structure in order to attempt to combine “good” properties of several types of graphs.

4.3.1 CLEX

“Clique-Expander” (CLEX) is a new supercomputing topology recently introduced
by Lenzen and Wattenhofer [41]. The CLEX construction is recursive, starting with
a specified number of cliques that are sparsely interconnected. According to the
authors, the CLEX design is motivated by a desire to “localize the issue of an effi-
cient communication network to much smaller systems which may reside on a single
multi-core board.” CLEX is touted to have superior point-to-point communication
properties, particularly when compared with toroidal topologies; nonetheless, the
Lenzen and Wattenhofer acknowledge “the price we pay for these properties is [high]
node degrees.”

In this section, we will define the CLEX topology and prove new bounds on the
diameter, algebraic connectivity, and bisection bandwidth. As the authors of CLEX
note that that “the high connectivity of a CLEX system could be considered an abstrac-
tion that can be replaced by any efficient local communication scheme within the
cliques,” we generalize our spectral analysis of CLEX accordingly. In particular, our
analysis allows one to replace the cliques of the CLEX construction with other graphs.
We first begin by defining the CLEX graph, as given in [41].

Definition 9 (CLEX, C(k, �)) For given positive integers k and �, a CLEX digraph,
denoted C(k, �), is on n = k� vertices with � “levels” and is defined recursively.
The base case is C(k, 1) = Kk , the complete graph on k vertices. The vertex set of
C(k, �+1) is the (�+1)-fold cartesian product of V (Kk). The edge set ofC(k, �+1)
consists of all edges from k copies of C(k, �), with additional directed edges between
these copies. Note the last entry in each vertex identifies which “copy” of C(k, �) that
vertex belongs to. The additional edges between these copies of C(k, �) are given by
the set:

{((v1, . . . , vl , i), (v1, . . . , v�−1, j, v�)) : i, j ∈ [k]}.

With regard to the diameter of CLEX, the authors in [41] give an upper bound1 of
C(k, �) as 2� − 1. We claim that the diameter is bounded by �.

Proposition 4 The diameter of the CLEX graph C(k, �) is at most �. Furthermore, this
bound is tight.

Proof We construct a walk of length � between two arbitrary vertices of C(k, l),
(v1, . . . , vl) and (w1, . . . , w�) as follows:

1 Note that there is actually a typo in their paper here, as they write 21/� − 1, which is non-integer.
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(v1, . . . , v�), (w�, v2, . . . , v�), (w1, wl , v3, . . . , v�),

(w1, w2, wl , v4, . . . , v�), . . . , (w1, . . . , w�−1, w�).

Furthermore, this bound can seen to be tight by considering the path between
(i, i, . . . , i) and ( j, j, . . . , j) for any i �= j . Specifically, although each edge can
modify up to two positions in the vector describing the vertex, it can change the count
of any particular symbol in the string by at most one. �

The rest of our analysis will consider the CLEX digraph as an undirected multi-
graph (potentially with loops). Specifically, for every directed edge (i, j) in the CLEX
digraph we will have an undirected edge {i, j}, and thus, the total degree of any vertex
does not change. As our analysis only relies minimally on the structure of Kk , we
will consider a generalized version of CLEX, denoted C(G, �) where G is a t-regular,
connected graph on k vertices. We note that both the regularity and connectivity
conditions can be relaxed at various points in the following analysis; however, we
make both assumptions for simplicity of presentation.

We first note that even when G �= Kk , the arguments regarding the diameter follow
exactly after accounting for the diameter of G and potentially directed nature of G.

Lemma 3 Let G be a k-vertex graph, then

C(G, �) = G ⊗ Ik�−1 +
�−2∑
j=0

Ik j ⊗ M ⊗ Ik�−2− j ,

where M ∈ Z
k2×k2 is given by

M(i, j),(a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2 i = b, j = a

1 i = b, j �= a

1 i �= b, j = a

0 otherwise.

Proof The generic formula will follow immediately from the inductive characteriza-
tion of the CLEX graphs. We note that the edges of C(G, � + 1) can be partitioned
in two sets: those that come from C(G, �) and the cross-edges “between” copies of
C(G, �). Letting CG

� be the adjacency matrix for C(G, �), the edge coming from the
copies ofC(G, �) can be described byCG

� ⊗ Ik . Nownote that an edge is added between
(v1, . . . , v�−1, v�, v�+1) and (w1, . . . , w�−1, w�,w�+1) precisely when vi = wi for
1 ≤ i ≤ �i and v�+1 = w� orw�+1 = v�. Thus, the cross-edges are given by Ik�−1 ⊗M
and we have that

CG
�+1 = CG

� ⊗ Ik + Ik�−1 ⊗ M .

The non-inductive formula follows immediately from this relationship. �
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Lemma 4 Let M ∈ Z
k2×k2 be defined by

M(i, j),(a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2 i = b, j = a

1 i = b, j �= a

1 i �= b, j = a

0 otherwise.

We then have that spec(M) is the multiset
{
2k, k(k−1), (−k)(k−1), 0(k−1)2

}
.

Proof Let {ei } be the standard basis vectors for Rk and let 1 be the all ones vector in
R
k . We first note that

M =
k∑

i=1

(1 ⊗ ei ) (ei ⊗ 1)T + (ei ⊗ 1) (1 ⊗ ei )
T .

It is easy to see at this point that 1 ⊗ 1 is an eigenvector of M with eigen-
value 2k. Furthermore, we can see that the non-trivial eigenvectors must lie in
span

{{1 ⊗ ei }i ∪ {ei ⊗ 1}i
}
, as a 2k − 1-dimensional subspace of Rk2 .

Now consider

M
(
e j ⊗ 1

) =
k∑

i=1

(
(1 ⊗ ei ) (ei ⊗ 1)T + (ei ⊗ 1) (1 ⊗ ei )

T
) (

e j ⊗ 1
)

=
k∑

i=1

(1 ⊗ ei ) (ei ⊗ 1)T
(
e j ⊗ 1

)+ (ei ⊗ 1) (1 ⊗ ei )
T (e j ⊗ 1

)

= k
(
1 ⊗ e j

)+
k∑

i=1

ei ⊗ 1

= k
(
1 ⊗ e j

)+ 1 ⊗ 1.

Similarly, we have that M
(
1 ⊗ e j

) = k
(
e j ⊗ 1

) + 1 ⊗ 1. From this, it easy to see
that

M
(
e j ⊗ 1 − 1 ⊗ e j

) = −k
(
e j ⊗ 1 − 1 ⊗ e j

)
,

for all j . Noting that
∑

j

(
e j ⊗ 1 − 1 ⊗ e j

) = 0, we have that this yields a
k − 1-dimensional eigenspace associated with the eigenvalue −k. Finally, we note
that M

(
e j ⊗ 1 + 1 ⊗ e j − 2

k1 ⊗ 1
) = k

(
e j ⊗ 1 + 1 × e j − 2

k1 ⊗ 1
)
; we similarly

observe a k − 1 dimensional eigenspace associated with the eigenvalue k. As the
dimension of the non-trivial eigenspaces is at most 2k − 1, this provides a complete
characterization of the spectrum. �
Proposition 5 Let G be a t-regular, connected graph on k vertices. The algebraic
connectivity of C(G, �) is at most t + 3k − 1.
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Proof First we note that since G is t-regular, C(G, �) is t + 2k (� − 1) regular. Now
let (λ, v) be the eigenpair associated with the second largest eigenspace ofG such that

‖v‖ = 1 and let w = v ⊗
(

1√
k
1
)⊗�−1

. Since G is t-regular, we have that 〈v,1〉 = 0

and thus
〈
w,1⊗�

〉 = 0. Furthermore, since ‖v‖ = 1 and
∥∥∥ 1√

k
1
∥∥∥ = 1, we have that

‖w‖ = 1. Thus,wT Mw is a lower bound on the second largest eigenvalue ofC(G, �).
We now note that

wT Mw = wT G ⊗ Ik�−1w +
�−2∑
i=0

wT Ii ⊗ M ⊗ I�−2−iw

= λ + (v ⊗ 1)T M(v ⊗ M) +
�−2∑
i=1

2k

≥ λ − k + 2k(� − 2)

= −1 − k + 2k(� − 2).

Thus, the spectral gap is at most t + 2k(�− 1)− (−1 − k + 2k(� − 2)) = t + 3k + 1.
�

Proposition 6 Let G be a t-regular connected graph. If � ≥ 3, the bisection bandwidth
of C(G, �) is at most k�+1.

Proof We may assume without loss of generality that the vertices of G are given by
[k] = {1, . . . , k}, and thus, the vertex set of C(G, �) is given by [k]�. In order to upper
bound the bisection bandwidth, we will provide two explicit partitions of the vertex
set, one for the case when k is even and a modification construction for when k is odd.
To that end, define A to be the set of odd integers in [k] if k is even, and in [k − 1] if
k is even. Similarly define A′ to be the set of even integers in [k]. We note that if k is
even, then [k] is a disjoint union of A and A′, while if k is odd, [k] is a disjoint union
of A, A′, and {k}.

We first consider the case where k is even and define the sets X = [k]�−2 ×(
A × A′ ∪ A′ × A

)
and X = [k]�−2 × (A × A ∪ A′ × A′). Since |A| = ∣∣A′∣∣ and [k]

is a disjoint union of A and A′, it is clear that (X , X) is a bisection of the C(G, �).
Now let A� be the adjacency matrix of C(G, �) and let 1X (respectively, 1X ) be

the indicator vector for the set X (respectively, X ). By definition

BW (C(G, �)) = 1T
X A�1X = 1T

X

⎛
⎝G ⊗ Ik�−1 +

�−2∑
j=0

Ik j ⊗ M ⊗ Ik�−2− j

⎞
⎠1X .

Noting that for any set S, we have that1T
S I|S|1S = 0 as S and S are disjoint; this can

be simplified to

BW (C(G, �)) = 1T
X

(
Ik�−3 ⊗ M ⊗ Ik + Ik�−2 ⊗ M

)
1X
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= k�−3 (1[k]×A×A′ + 1[k]×A′×A
)T

(M ⊗ Ik + Ik ⊗ M)(
1[k]×A×A + 1[k]×A′×A′

)
= k�−3

(
2
k

2
1T[k]×AM1[k]×A′ + 4k1A×A′M1A×A

)
,

where the last line comes from the symmetry of A and A′ and the symmetry of M in
terms of the Kronecker product. Substituting in the definition for M , we get

(1 ⊗ 1A)T M (1 ⊗ 1A′) =
k∑

i=1

(1 ⊗ 1A)T
(
(ei ⊗ 1)(1 ⊗ ei )

T + (1 ⊗ ei )(ei ⊗ 1)T
)

(1 ⊗ 1A′)

=
k∑

i=1

|A| k
(
eTi 1A′

)
+ k

(
eTi 1A

) ∣∣A′∣∣
= 2k |A| ∣∣A′∣∣
= k3

2

and

(1A ⊗ 1A′)T M (1A ⊗ 1A) =
k∑

i=1

(1A ⊗ 1A′)
(
(ei ⊗ 1)(1 ⊗ ei )

T + (1 ⊗ ei )(ei ⊗ 1)T
)

(1A ⊗ 1A)

=
k∑

i=1

(
1T
Aei
) k

2

k

2

(
eTi 1A

)
+ k

2

(
1T
A′ei
) (

eTi 1A

) k

2

= k3

8
.

Thus, we have that if k is even, the bisection bandwidth is k�+1.
We now turn to the case where k is odd. Because of the parity issues in this case,

it will be convenient to define the bipartition inductively. To that end, let (B, B) be a
bipartition of C(G, � − 2) which witnesses the bandwidth such that |B| + 1 = ∣∣B∣∣.
Now define the sets

Y = [k]�−2 × ((A × A′) ∪ (A′ × A) ∪ ({k} × [k − 1])) ∪ (B × {k} × {k})
Y = [k]�−2 × ((A × A) ∪ (A′ × A′) ∪ ([k − 1] × {k})) ∪ (B × {k} × {k}) .

It is clear that since |A| = ∣∣A′∣∣ and ∣∣|B| − ∣∣B ′∣∣∣∣ = 1, (Y ,Y ) is a bipartition of [k]�.
Abusing notation slightly, we denote the set [k]�−2×((A × A′) ∪ (A′ × A)

)
by X and

the set [k]�−2 × ((A × A) ∪ (A′ × A′)
)
as X . If we again let A� denote the adjacency
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matrix of C(G, �), we have that

1T
X A�1X = (k − 1)3k�−2

by similar arguments as above. Additionally, we note that we have that

(1 ⊗ 1A)T M
(
1 ⊗ 1[k−1]

) = k(k − 1)2

(1 ⊗ 1A)T M (1 ⊗ ek) = k(k − 1)(
1 ⊗ 1[k−1]

)T
M (1 ⊗ ek) = 2k(k − 1)

(1A ⊗ 1A′)T M
(
ek ⊗ 1[k−1]

) = (k − 1)2

4
(1A ⊗ 1A′)T M (ek ⊗ ek) = 0(
1[k−1] ⊗ ek

)T
M (ek ⊗ ek) = k − 1.(

1[k−1] ⊗ ek
)T

M
(
ek ⊗ 1[k−1]

) = k(k − 1)

Putting these calculations together, we get that the bandwidth of the partition (Y ,Y )

is

(k − 1)k� + 1T
[k]�−2×[k−1]

(
Ik�−3 ⊗ M

)
1B×{k} + 1T

B×{k}×{k}A�1B×{k}×{k}.

Observing that A� = A�−2 ⊗ Ik2 + Ik�−3 ⊗ M ⊗ Ik + Ik�−2 ⊗ M , it is easy to see that

1T
B×{k}×{k}A�1B×{k}×{k} = BW(C(G, � − 2)) + 1T

B×{k}
(
Ik�−3 ⊗ M

)
1B×{k}

Now we note that terms involving 1B×{k} sum to

(
1[k]�−1 − 1B×{k}

)T (
Ik�−3 ⊗ M

)
1B×{k}

= 1[k]�−1

(
Ik�−3 ⊗ M

)
1B×{k} − 1T

B×{k}
(
Ik�−3 ⊗ M

)
1B×{k}

= 2k |B| − 1T
B×{k}

(
Ik�−3 ⊗ M

)
1B×{k}

≤ k
(
k�−2 − 1

)

Thus, we have that

BW (C(G, �)) ≤ (k − 1)k� + k�−1 − k + BW (C(G, � − 2))

= k�+1 − k� + k�−1 − k + BW (C(G, � − 2)) .

Now, as BW (C(G, 1)) ≤ k2 and BW (C(G, 2)) ≤ k3, it is easy to see that by
induction BW (C(G, �)) ≤ k�+1. �
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4.3.2 G-connected-H

The G-connected-H construction generalizes several different constructions, such as
the Peterson Torus and Dragonfly topologies discussed in this section as well as the
Cube-Connected Cycle topology discussed in Sect. 4.2.3. To see this, we first formally
define what we mean by a G-connected-H topology.

Definition 10 (k-fold G-connected-H , G �k H ) A k-fold G-connected-H topology,
G = G �k H , is constructed from a d-regular G and a r -regular td-vertex graph H .
The vertex set of G is VG × VH and G[{g} × VH ] is isomorphic to H for all vertices
g ∈ VG . The remaining edges form a k-regular graph on VG × VH satisfying that

e
({v} × VH ,

{
v′}× VH

) =
{
kt

{
v, v′} ∈ EG

0 otherwise
.

When k = 1 will suppress the subscript and simply write G �H .

Oftentimes, G is a Cayley graph and so the k-regular graph on VG × VH can be
defined by a mapping from the generators of G to ordered pairs in V 2

H . For example,
we denote by Qk the k-dimensional hypercube; we can view the Cube-Connected
Cycle topology of Sect. 4.2.3 as a 1fold Qk-connected-Ck . More concretely, we note
that Qk can be represented as the Cayley graph on Zk

2 generated by the standard basis
vectors, {e1, . . . , ek}. Since the generators of Qk have order two, the matching edges
can be formed by associating each generator with a fixed vertex of Ck .

This viewpoint can be extended to more complicated topologies, such as the Peter-
son Torus [35].

Definition 11 (Peterson Torus, PT(a, b)) Let a, b ≥ 2 such that at least one of a or b
is odd. Define the vertex set of the Peterson Torus Topology, PT(a, b), as the set of
ordered triples (x, y, p) where 0 ≤ x < a, 0 ≤ y < b, and 0 ≤ p < 10. Fixing the
labels of the Peterson graph as given in Fig. 4a, the edge relationship is defined as:

• internal edge (x, y, p) is adjacent to (x, y, q) if p and q are adjacent in the Petersen
graph.

• longitudinal edge (x, y, 6) is adjacent to (x, y + 1, 9).
• latitudinal edge (x, y, 1) is adjacent to (x + 1, y, 4).
• diagonal edge (x, y, 2) is adjacent to (x + 1, y + 1, 3).
• reverse diagonal edge (x, y, 7) is adjacent to (x − 1, y + 1, 8).
• diameter edge (x, y, 0) is adjacent to (x + �a/2� , y + �b/2� , 5).

This can be seen as a 1fold G-connected-H graph where G is the Cayley graph on
Za×Zb with generator set {±(0, 1),±(1, 0),±(1, 1),±(−1, 1),±(�a/2� , �b/2�)} and
H is the Peterson graph. We note that the condition that one of a or b is odd, is simply
to ensure that the generator (�a/2� , �b/2�) is not its own inverse, and so G has degree
10. By allowing multiple edges in G, this restriction can be eliminated.

We first consider the bisection bandwidth of G �k H . As this will depend explicitly
on the number of nodes and edges in H , it is helpful to recall some standard notation
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Reduced PT(a, b)(a) (b)

Fig. 4 Peterson graph and the Peterson graph with the symmetric function induced by the Peterson torus

first. Following the notation of West [65], the number of nodes in a network G will be
denoted by |G| and the number of edges will be denoted ‖G‖.
Proposition 7 Let G = G �k H, then the bisection bandwidth of G is at most
|G||H |
2‖G‖ k BW(G) + BW(H).

Proof We note that if |G| is even, then the bipartition of G yielding BW(G) lifts
naturally to a bipartition of G �k H . As each edge in G is represented by |G||H |

2‖G‖ k

edges in G �k H , this gives an upper bound of |G||H |
2‖G‖ k BW(G). If instead, |G| is

odd, the natural lift of the minimal bipartition doesn’t yield a bipartition of G �k H .
However, this can be corrected by splitting one of the copies of H , yielding the extra
BW(H) term. �

We now turn the algebraic connectivity ofG �k H . Because of the general structure
of thematching edges and the potentially unstructured nature ofG and H , the reduction
lemma cannot be applied in general to G-connected-H graphs. However, there is
still a natural symmetry formed by the G-connected-H structure, specifically the
identification of vertices by commonG labels or common H labels. However, because
of the lack of automorphism structure we must turn to eigenvalue interlacing results
such as the following by Haemmers.

Lemma 5 [17, Corollary 1.8]Let A be an n×n real-symmetricmatrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Let α1, . . . , αm be a partition of the integers {1, 2, . . . , n} into
m nonempty consecutive sets of integers, where |αi | = ni . Let Ai j be the submatrix
of A defined by the entries whose row is in αi and column is in α j . Define B as the
m × m real symmetric matrix with

bi j = 1T
ni Ai j1n j

ni
.

The eigenvalues of B interlace the eigenvalues of A, in particular, λ2(B) ≤ λ2.

123



Ramanujan graphs and the spectral gap of supercomputing…

Proposition 8 Let G be a connected d-regular graph and let H be a connected r-
regular, td-vertex graph, and let G = G �k H be a k-fold G-connected-H graph. Let
λ2 be the second largest eigenvalue of G, then the algebraic connectivity of G is at
most k − kλ2

d .

Proof Let A be the adjacency matrix of G = G �k H . We will proceed to show that
λ2(G) ≥ 1

d λ2 + r , and then, the desired result follows immediately from the (r + k)-
regularity of G. To this end, we will apply Lemma 5 to the partition of the vertices
given by {{v} × VH }v∈VG . Abusing notation, for any v, v′ ∈ VG we will denote by
Avv′ the submatrix induced by the rows {v} × VH and columns

{
v′} × VH . Noting

that |{v} × VH | = td for all v ∈ VG , we have that

1T
td Avv′1td =

⎧⎪⎨
⎪⎩
r td v = v′

tk
{
v, v′} ∈ EG

0
{
v, v′} /∈ EG

and thus B = r I + k
d AG where AG is the adjacency matrix of the graph G. The

interlacing of the eigenvalues of B and G provides the result immediately. �
The strong dependence on the spectrum ofG is unsurprising as theG-connected-H

graphs implicitly inherent the connectivity structure ofG, while increasing the relative
degrees in a way that doesn’t improve the spectral behavior of G. In particular, we
note that another way of deriving Lemma 8 is to apply the Raleigh–Ritz formulation
of λ2(G) and use the vector 1√

td
1⊗w2 where (λ2, w2) is the second largest eigenpair

of AG .
It is natural to consider the implications of Lemma 5 when partitioning on the H -

coordinate instead of the G-coordinate. Unfortunately, because of the unstructured
nature of the k-regular graph, relatively little can be said. However, if the graph G
is Cayley graph and the matching edges are tied to the generator set, then the auto-
morphisms of G (specifically, those that follow from vertex transitivity of Cayley
graphs) imply that there is an automorphism of G �H such that the orbits are given
by VG × {h} for h ∈ VH . Then, the Reduction Lemma yields that there is multi-graph
whose spectrum is a subset of the spectrum of G �k H . Specifically, take the graph
H plus a k-regular graph (allowing self-loops) coming from the structure of the k-
regular graph in G �k H . As an example, the Peterson Torus can be reduced with the
reduction lemma to the graph illustrated in Fig. 4 with the red edges corresponding to
the matching edges. Computing the algebraic connectivity of the reduced graph yields
that the ρ2 for the Peterson torus is at most 2. While this is small, it can be reduced
further by applying Proposition 8.

Corollary 1 Let a ≥ b ≥ 2 such that at least one of a or b is odd. The algebraic

connectivity of PT(a, b) is at most
4−3 cos

(
4π
a

)
−cos

(
2π
a

)
5 and the bisection bandwidth

is at most 6b + ab + 5.

Proof By Proposition 8 to bound the algebraic connectivity, it suffices to find the
second largest eigenvalue of the Cayley graphG on the group Γ = Za ×Zb generated
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by

S = {±(1, 0),±(0, 1),±(1, 1),±(1,−1),± (�a/2� , �b/2�)} .

Let χ : Γ → C
|Γ | be the character table for Γ . We recall that the spectrum of G is

explicitly given by the multiset

{∑
s∈S

χg(s) | g ∈ Γ

}
,

see, for instance, [16]. As Γ is the product of two cyclic groups, it is straightforward
to explicitly determine the character table and get that the spectrum is given by the
multiset ⎧⎨

⎩
∑

(s,t)∈S
e
2π i x
a se

2π iy
b t | (x, y) ∈ Za × Zb

⎫⎬
⎭ .

In particular, this gives that λ2 for G is given by

2max(x,y) �≡(0,0) cos
( 2πx

a

)+ cos
(
2π y
b

)
+ 2 cos

( 2πx
a

)
cos
(
2π y
b

)
+ cos

(
2π�a/2�x

a + 2π�b/2�y
b

)
.

It is relatively straightforward to see that the maximum is achieved when (x, y) =
(2, 0), yielding that λ2 is at least

2 + 6 cos

(
4π

a

)
+ 2 cos

(
4π
⌊ a
2

⌋
a

)
≥ 2 + 6 cos

(
4π

a

)
+ 2 cos

(
2π

a

)
.

The upper bound on the bisection bandwidth will follow from Lemma 7. Specifi-
cally, as the Peterson torus is a G �H with G being the Cayley graph on Za ×Zb with
generators S and H the Peterson graph, the bisection bandwidth is upper bounded by
BW(G)+BW(H). As the girth of the Peterson graph is 5, any collection of 5 vertices
induces at most 5 edges. Thus, there are at least 5 edges crossing the cut, and this
lower bound is achieved exactly by taking any of the 5 cycles in the Peterson graph.

For the bisection bandwidth of the graph on Za × Zb, we will denote the vertices
by [a]× [b]. If a is even, then the set T = [ a2 ]× [b] induces a bipartition with 6b+ab
edges crossing the cut, that is, the edges corresponding to elements

{ a
2

}× [b] and the
generators {(1,−1), (1, 0), (11)}, the edges corresponding to the elements {1} × [b]
and the generators {(−1,−1), (−1, 0), (−1, 1)}, and the edges corresponding to an
arbitrary vertex of T and the generators

{(⌊ a
2

⌋
,
⌊ b
2

⌋)
,
(− ⌊ a2⌋ ,− ⌊ b2⌋)}. In the case

that a is odd, we consider the set [⌊ a2⌋]×[b]∪{⌈ a2⌉}×[⌊ b2⌋] and in a similar manner
get that there are 6b + 2

⌊ ab
2

⌋
edges crossing the cut, completing the proof. �
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4.3.3 DragonFly

As we will see, the DragonFly topology will end up being a specific class of G-
connected-H topologies and can be understood in terms of the results of Sect. 4.3.2;
however, due to their recent importance in “readily” available supercomputing topolo-
gies [3,10] we address them separately in this section. The motivating idea behind the
DragonFly topology is to maximize the performance of a supercomputing topology
while minimizing the overall cost of the system. To that end, Kim, Dally, Scott, and
Abts designed theDragonFly topology around a two-level hierarchy [37]. The top level
network employs an optical network to communicate over long distances (i.e. across
the physical layout of the supercomputer), while the second layer employs an electrical
network to communicate short distances (i.e. intrarack communication) and reduce the
overall cost. While the specifications of Kim, et al. allow for arbitrary topologies for
both the optical and electrical portions of the topology, the typically implementation
uses a fully connected optical network combinedwith some other network for the elec-
trical network, oftentimes either fully connected or a Butterfly variant. For example,
the Cray Slingshot interconnect (which is being used for NSERC’s Perlmutter system)
uses 64 port switches to build a DragonFly topology based on all-to-all connections
for both the optical and electrical networks.

Definition 12 (DragonFly, DragonFly(H)) If H is an n-vertex, r -regular graph, then
the DragonFly topology with parameter H consists of n + 1 copies of H together
with a matching such that each edge goes between distinct copies of H . Alternatively,
DragonFly(H) may be thought of as a 1-fold Kn �H .

We note that since the DragonFly topology can be represented as G �H topology,
we immediately have bounds on the algebraic connectivity and bisection bandwidth.

Corollary 2 Let H be a connected graph and let D be the DragonFly topology gen-
erated by H. The algebraic connectivity of D is at most 1 + |H |

2‖H‖ and the bisection
bandwidth is at most

( |H | + 1

2

)2

+ BW(H).

Proof Noting that D = K|H |+1 �H and the second largest adjacency eigenvalue of
the complete graph is−1, the bound on the algebraic connectivity follows immediately
from Proposition 8. To provide the upper bound on the bisection bandwidth, consider a
equipartition of the |H |+1 copies of H . If |H | is odd, then the only edges crossing the
partition are “matching” or “optical” edges and there are

( |H |+1
2

)2
of them. However,

if |H | is even, then one of the copies of H must also be partitioned yielding

( |H |
2

)2

+ |H |
2

+ BW(H) ≤
( |H | + 1

2

)2

+ BW(H)

edges crossing the partition. �
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4.3.4 SlimFly

In [11], Besta and Hoefler suggested that it would be advantageous to consider topolo-
gies that have close to the maximum number of nodes for a given radix and diameter.
The upper bound on the number of nodes of a k-regular graph of diameter d is given
by 1 + k

∑d−1
i=0 (k − 1)i and is referred to as the Moore bound. The class of graphs

exactly achieving this bound, known as Moore graphs, has been extensively studied
and shown to have significant limitation on both the radix and size, see [47].

In this context, Besta and Hoefler propose the SlimFly topology based on the con-
struction of McKay, Miller, and Širán [46] which is close to achieving the Moore
bound. These SlimFly topologies have a single parameter q, which is a prime power
such that q ≡ 1 (mod 4) and results in a topology on 2q2 nodes with degree 3q−1

2 .

Definition 13 (SlimFly, SlimFly(q)) Let ζ be a primitive qth-root of unity over the
Galois field Fq . The vertices are then elements of {0, 1} × Fq × Fq . The edge set is
broken into three sets:

1.
{
(0, x, y), (0, x, y′)

}
where y − y′ = ζ i and i ≡ 0 (mod 2),

2.
{
(1,m, c), (1,m, c′)

}
where c − c′ = ζ j and j ≡ 1 (mod 2), and

3. {(0, x, y), (1,m, c)} where y = mx + c.

Proposition 9 Let q be a prime-power such that q ≡ 1 (mod 4). The algebraic con-
nectivity of the SlimFly topology with parameter q is q.

Proof In order to bound the algebraic connectivity, we will use the Reduction Lemma.
To that end, let ζ be a primitive root of the Galois field Fq and define γζ by (0, x, y) �→
(0, x, y+ζ ) and (1,m, c) �→ (1,m, c+ζ ). It is easy to see that this is an automorphism
of theSlimFly topology and that the orbits of the group generated by this automorphism
are given by {0}×{x}×Fq and {1}×{m}×Fq for x,m ∈ Fq . As an arbitrary element
(0, x, y) ∈ {0} × Fq × Fq has precisely one neighbor in the orbit {1} × {m} × Fq for
anym ∈ Fq , namely (1,m, y−mx), we have that the reduction graph H is a complete
bipartite graph Kq,q with

q−1
2 self-loops at every vertex. As the algebraic connectivity

of this graph is q, by the Reduction Lemma we have that the algebraic connectivity of
the is at most q.

Now we will show that the algebraic connectivity is exactly q. To this end, recall
that the eigenspace associated with any eigenvalue that is not present in the spectrum
of the reduced graph has the property that the entries sum to zeros over all of the orbits.
That is, if v is such an eigenvector and 1σ is the indicator function for the orbit σ , then
vT1σ = 0. Furthermore, since the orbits of the automorphismareCayley graphs onFq ,
the eigenvectors can be expressed in terms of the characters of

(
Fq ,+

)
. Additionally,

the eigenvalues associatedwithχ f are given by the character sums over the generators.
Specifically, the eigenvalue associated to the non-trivial character χ on the Cayley
graph is generated by ζ 2 j is μ =∑q−1/2

j=1 χ(ζ 2 j ), while the eigenvalue associated with

χ on the Cayley graph is generated by ζ 2 j−1 is
∑q−1/2

j=1 χ(ζ 2 j−1) = −1−μ. Thus, let{
χ f
}q−1
f=1 be the set of non-trivial characters of

(
Fq ,+

)
. The eigenvector v can then
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be expressed as

∑
i∈{0,1}

∑
x∈Fq

∑
f ∈[q−1]

ai,x, f√
q

ei ⊗ ex ⊗ χ f

where
∑

i,x, f α2
i,x, f = 1

Now letting A be the adjacency matrix of the SlimFly topology, we consider the
quadratic form vT Av in three parts. The portion corresponding to edges induced by
{0} ×Fq ×Fq , the portion corresponding to edges induced by {1} ×Fq ×Fq , and the
portion corresponding to edges between these two sets. It is easy to see that the contri-
bution of the edges internal to these two sets is given by

∑q−1
f =1

∑
x∈Fq α0,x, f α0, f ,xμ f

and
∑q−1

f =1

∑
m∈Fq α0,m, f α1,m, f (−1−μ f ), respectively. Recalling the edges between

the two sets are governed by the relationship y = mx + c for (x, y), (m, c) ∈ F
2
q , we

have that the contribution of those edges to the quadratic form is

∑q−1
f ,g=1

∑
(x,y)∈F2q

∑
(m,c)∈F2q

α0,x, f α1,m,g
q χ f (y)χg(c)1y=mx+c

+α0,x, f α1,m,g
q χ f (y)χg(c)1y=mx+c.

Nowwe note that the nonzero entries in the sum occur when c = y−mx . Furthermore,
χg is a homomorphism into (C,×) so χg(y−mx) = χg(y)χg(−mx). By additionally

recalling that
{
χ f
}q−1
f =1 is an orthogonal basis, this sum simplifies to

q−1∑
f =1

∑
x∈Fq

∑
y∈Fq

∑
m∈Fq

α0,x, f α1,m, f χ f (−mx) + α1,m, f α0,x, f χ f (−mx).

Thus, letting M be the diagonal matrix formed from
{
μ f
}q−1
f =1, we have that the norm

of the quadratic form is bounded above by the largest eigenvalue of

M =
[
M I
I −M − I

]
.

Motivated by this formulation, we consider the auxiliary problem

max
x2+y2=1

μx2 + 2xy − (μ + 1)y2.

Noting that we may assume that x, y ≥ 0, this can be reparameterized as

max
δ∈[−1,1] μ

(
1

2
+ 1

2
δ

)
+ 2

√
1

2
+ 1

2
δ

√
1

2
− 1

2
δ − (μ + 1)

(
1

2
− 1

2
δ

)
.
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The derivative of the objective function is 2μ+1
2 − δ√

1−δ2
with roots ± 2μ+1√

(2μ+1)2+4
.

Thus, the largest eigenvalue of M is

max
f ∈[q−1]max

⎧⎨
⎩μ f ,−μ f − 1,−1

2
+ 1

2

√(
2μ f + 1

)2 + 4,−1

2
− 1

2

(
2μ f + 1

)2 − 4√(
2μ f + 1

)2 + 4

⎫⎬
⎭ .

Using the fact that the Cayley graph generated by the odd powers of ζ and the Cayley
graph generated by the even powers of ζ are isomorphic (via x �→ ζ x), this reduces
to − 1

2 + 1
2

√
(2μ + 1)2 + 4 where μ is the second largest eigenvalue of the Cayley

graph generated by the even powers of ζ . Using the fact that this Cayley graph is edge
transitive and has diameter 2, we get that μ ≤ q−1

2 − 1
4
q−1
2 (see [21, Section 7.3]).

Combining these results, we have that the largest eigenvalue not represented in the
reduced graph is at most

−1

2
+ 1

2

√(
3

4
q + 1

4

)2

+ 4 <
q − 1

2

for q ≥ 5. �
Proposition 10 Let q be a prime-power such that q ≡ 1 (mod 4). The bisection

bandwidth of the SlimFly topology with parameter q is at most q(q2+1)
2 and at least

q3

2 .

Proof Let X ⊂ Fq such that |X | = q−1
2 and let X be the complement of X . We

consider the bipartition {0}× X ×Fq ∪ {1}× X ×Fq . We note that there are no edges
between {0} × X × Fq and {0} × X × Fq , and similarly, there are no edges between
{1} × X × Fq and {1} × X × Fq . Now, as {0} × {x} × Fq has exactly one edge to
{0} × {m} × Fq for every x,m ∈ Fq . Thus, the bisection bandwidth of the SlimFly

topology is at most q
(
q−1
2

)2 + q
(
q+1
2

)2 = q(q2+1)
2 .

The lower bound follows from Lemma 9 and the lower bound on the bandwidth
based on the algebraic connectivity. �

It is worth mentioning that the gap between the bisection bandwidth achieved by a
3q−1
2 regular graph on 2q2 vertices and the bisection bandwidth of the SlimFly topol-

ogy could be attributed to fact that the SlimFly topology is not a Moore graph. In fact,
it is straightforward to construct a bisection of a Moore graph whose bisection band-
width asymptotically matches the known lower bounds on the bisection bandwidth of
a similar Ramanujan graph.

Proposition 11 Let G be aMoore graph with regularity q and girth 2d+1. The bisec-

tion bandwidth of G is at most q2 + q2

4 (q − 1)d−1 if q is even and q+ q2−1
4 (q − 1)d−1

if q is odd.
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Fig. 5 Proportional bisection bandwidth for supercomputing topologies by number of compute nodes

Proof Fix an arbitrary vertex v in G and let its neighbors be w1, . . . , wq . Since the
girth of Moore graph is 2d + 1, the diameter is d. For i ∈ [q] define Wi as the set of
vertices whose shortest path to v goes through wi and define Si ⊂ Wi as the vertices
are at distance precisely d from v. Note that since G is a Moore graph, for any vertex
s ∈ Si all the neighbors of s must be in distinct sets S j where j �= i .

Supposefirst thatq is even andconsider the bipartition

((
∪

q
2Wi

i=1

)
∪ {v} ,∪q

i= q
2 +1

Wi

)
.

Now clearly each edge in each of the W ′
i ’s does not cross the bipartition, and so the

only edges we need concern ourselves with are those adjacent to v and those adjacent
to vertices of Si . Now as each vertex in Si is adjacent to a vertex in each of the S j ’s

except Si , this implies that there are q
2 + q

2

∑ q
2
i=1 |Si | = q

2

(
1 + q

2 (q − 1)d−1) edges
crossing the bisection.

The construction for q odd is similar to the one for q even, except rather than placing
all ofWq+1

2
on one side of the partition, the partitioning procedures is done of the trees

rooted at the vertices of distance 2 from v in Wq+1
2
. �

5 Conclusion

We provide in Table 1 a summary of the results on the bisection bandwidth and
algebraic connectivity of the topologies considered in this work. Additionally, for
comparison we provide bounds on the bisection bandwidth and algebraic connectivity
for a similarly sized Ramanujan topology. We focus on bisection bandwidth in our
comparison, although we remind the reader the spectral results summarized in Table 1
also provide bounds on a plethora of other salient interconnection network properties
(such as diameter, average distance, and fault tolerance) via the theorems mentioned
in Sect. 2. As closer inspection of the table makes clear, for each of these topologies
there is a significant gap between the achieved value and the minimum guaranteed to
be achievable in an equivalent Ramanujan topology. However, assessing these results
across families is more challenging due to different input parameters and parameter
multiplicities for each topology. To better enable such a comparison, in Fig. 5 we plot
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the proportional2 bisection bandwidth by number of compute nodes for each topology,
as well as the minimum guaranteed by a Ramanujan topology. In general, the solid
lines represent those topologies with switches comparable to current topologies (that
is, having radix at most 64 as in the Cray Slingshot Topology [3,10] while the dashed
lines represent the proportional bisection bandwidth achievable with next-generation
switches (radix at most 128), and the dotted line represents those topologies that would
require even higher radix switches. We note that even the limitations on the radix are
not sufficient to uniquely determine the highest bisection bandwidth proportion for
some topologies. Thus, we will also impose following additional assumptions on the
topologies with an aim of avoiding trivial instantiations of the topology:

• Butterfly for the Butterfly topology, we assume that there are at least 3 ranks of
switches, i.e. s ≥ 3,

• CLEX for the CLEX topology we assume that there are at least two layers � ≥ 2
and that the initial generating graph is the complete graph on at least 3 vertices,

• Data Vortex for the Data Vortex, we assume that there are at least 3 “cylinders,”
i.e. C ≥ 3,

• DragonFly–Butterfly similar to the Butterfly topology, for the DragonFly topology
where the electrical network is given by a Butterfly network, we assume that s ≥ 3,
and

• Torus for the torus topology we assume that all the cycles are non-degenerate, i.e.,
that k ≥ 3.

Even as we compare these upper bounds on the best possible bisection bandwidth for
each topology against the worst possible in a Ramanujan topology, we still observe
a sizable gap, with the 128 radix SlimFly and CLEX topologies the closest to the
Ramanujan lower bound.We suspect the region where CLEX outperforms Ramanujan
graphs is an artifact of the looseness of the analysis of CLEX for small parameter
settings, rather than a true reflection of the relative sizes of the bisection bandwidths.

In light of the beneficial structural properties of random graphs, it is natural to
ask whether any potential utility of Ramanujan supercomputing topologies is already
offered by randomized constructions, such as the well-known Jellyfish topology.
Indeed, such topologies are touted for their low diameter, short average path lengths,
and high bisection bandwidth [60]. Although random regular graphs are not quite
Ramanujan, it is true that random d-regular graphs have good spectral expansion.
Notably, Friedman’s celebrated proof [25] of Alon’s second eigenvalue conjecture [6]
showed that ifG is a random k-regular graph on n vertices, then with probability going
to 1 as n → ∞, we have λ(G) ≤ 2

√
k − 1 + o(1). Thus, in the limiting sense, ran-

dom regular graphs are “almost Ramanujan.” Nonetheless, randomized constructions
are also limited as interconnection topologies in that they pose serious challenges for
routing, physical layout, and wiring [60]. In these regards, structured topologies offer
advantages.

Consequently, one may ask whether more structured families, such as Cayley
graphs, might serve as a more amenable alternative to random constructions. Since
many of the popular topologies can be phrased as Cayley graphs (e.g., the torus and

2 Relative to sum of the graph degrees, or twice the number of links.
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hypercube topologies) or have a strong connections to Cayley graphs (e.g., the Slim-
Fly and Peterson torus topologies), it is natural to speculate that a Cayley graph could
serve as the basis of a strong supercomputing topology. Indeed, work [5] investigating
Cayley graphs as interconnection networks dates back to at least the 1980’s, see [32]
for a survey. In particular, abelian Cayley graphs may seem particularly promising
because the classification of abelian groups gives a natural means of easily performing
efficient routing. However, abelian Cayley graphs do not offer the spectral expansion
of Ramanujan graphs: as a consequence of a result of Cioabă [22], there is a constant
C(k, ε) such that if the group has more elements than C(k, ε), then any Cayley graph
generated by a k-element set has algebraic connectivity at most ε. Thus, for any fixed
radix k, there does not exist an infinite family of radix k abelian Cayley graphs which
are Ramanujan.

Given these trade-offs between randomized designs and highly structured Cayley
graph designs, we believe the explicit Ramanujan construction by Lubotsky, Phillips,
and Sarnak warrants further investigation as a candidate for supercomputing inter-
connection networks. By virtue of their optimal spectral expansion, LPS graphs offer
many of the same (if not better) structural properties exhibited by random regular
graphs. Yet, as highly structured Cayley graphs, LPS graphs may be more amenable
to practical considerations and easier to develop efficient routing schemes for than
random constructions. Indeed, recent work by Sardari [57], as well as Pinto and Petit
[53] investigating short paths in LPS graphs, shows that, while sometimes challenging
to analyze, the local structure of these topologies may be exploited for the purposes of
routing.While theworkwe’ve done here attests to the structural benefits of LPS graphs
over other supercomputing topologies, additional work is needed to better assess the
benefits of utilizing LPS graphs as interconnection networks in practice.
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46. McKay BD, Miller M, Širáň J (1998) A note on large graphs of diameter two and given maximum

degree. J Comb Theory Ser B 74:110–118
47. Miller M, Sirán J (2005) Moore graphs and beyond: a survey of the degree/diameter problem. Eectron

J Comb 1000:DS14
48. Mohar B (1991) Eigenvalues, diameter, and mean distance in graphs. Graphs Comb 7:53–64
49. Mohar B, Alavi Y, Chartrand G, OellermannO (1991) The laplacian spectrum of graphs. Graph Theory

Comb Appl 2:12
50. Morgenstern M (1994) Existence and explicit constructions of q + 1 regular ramanujan graphs for

every prime power q. J Comb Theory Ser B 62:44–62
51. Nilli A (1991) On the second eigenvalue of a graph. Discrete Math 91:207–210
52. Paturi R, Lu D-T, Ford JE, Esener SC, Lee SH (1991) Parallel algorithms based on expander graphs

for optical computing. Appl Opt 30:917
53. Pinto EC, Petit C (2018) Better path-finding algorithms in LPS Ramanujan graphs. J Math Cryptol

12:191–202
54. Preparata FP, Vuillemin J (1981) The cube-connected cycles: a versatile network for parallel compu-

tation. Commun ACM 24:300–309
55. Prieto-Castrillo F, Astillero A, Botón-Fernández M (2014) A stochastic process approach to model

distributed computing on complex networks. J Grid Comput 13:215–232
56. Riess C, Strehl V, Wanka R (2012) The spectral relation between the cube-connected cycles and

the shuffle-exchange network. PARS Parallel Algorithmen Rechnerstrukturen und -Systemsoftware
29:15–26

57. Sardari NT Complexity of strong approximation on the sphere. arXiv:1703.02709
58. Shacham A, Small B, Liboiron-Ladouceur O, Bergman K (2005) A fully implemented 12 × 12 data

vortex optical packet switching interconnection network. J Lightwave Technol 23:3066–3075
59. Sinclair A, Jerrum M (1989) Approximate counting, uniform generation and rapidly mixing Markov

chains. Inf Comput 82:93–133
60. Singla A, Hong C-Y, Popa L, Godfrey PB (2012) Jellyfish: networking data centers randomly. In:

Presented as part of the 9th {USENIX} Symposium onNetworked SystemsDesign and Implementation
({NSDI} 12), pp 225–238

61. Tanner RM (1984) Explicit concentrators from generalized N-gons. SIAM J Algebraic Discrete Meth-
ods 5:287–293

62. Upfal E (1992) An o(log n) deterministic packet-routing scheme. J ACM 39:55–70
63. Valadarsky A, Shahaf G, Dinitz M, Schapira M (2016) Xpander: towards optimal-performance data-

centers. In: Proceedings of the 12th International on Conference on emerging Networking Experiments
and Technologies—CoNEXT ’16. ACM Press

64. Vazirani VV (2001) Approximation algorithms. Springer, Berlin
65. West DB et al (1996) Introduction to graph theory, vol 2. Prentice Hall, Upper Saddle River
66. Yang Q, Bergman K (2002) Performances of the data vortex switch architecture under nonuniform and

bursty traffic. J Lightwave Technol 20:1242–1247
67. Young SJ Weighted spectrum of the universal cover and an Alon-Boppana result for the normalized

Laplacian. Preprint

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1607.00298v1
http://arxiv.org/abs/1703.02709

	Ramanujan graphs and the spectral gap of supercomputing topologies
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Network properties

	3 Ramanujan graphs
	3.1 Ramanujan constructions
	3.1.1 Lubotzky, Phillips, Sarnak construction
	3.1.2 Marcus, Spielman, Snivrasta construction

	3.2 Related work in high-performance computing

	4 Spectral gap in supercomputing topologies
	4.1 Product (grid-like) topologies
	4.2 Grid variants
	4.2.1 Butterfly
	4.2.2 Data Vortex
	4.2.3 Cube-Connected Cycles

	4.3 Miscellaneous
	4.3.1 CLEX
	4.3.2 G-connected-H
	4.3.3 DragonFly
	4.3.4 SlimFly


	5 Conclusion
	Acknowledgements
	References




