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1. Introduction

Graph eigenvalues play a powerful role in the study of random walks. In particular, 
eigenvalues are a primary tool for bounding a number of key random walk parameters, 
such as mixing time. Consequently, bounds on graph eigenvalues are not only of interest 
in themselves, but also may have immediate implications for the behavior of the random 
walk (for a survey, see [14]). In the case of the relaxation time of a discrete reversible 
Markov chain, eigenvalues themselves define the quantity of interest.

In this paper, we examine an extremal problem concerning the normalized Laplacian 
spectral gap, the reciprocal of which defines the relaxation time of a random walk. The 
normalized Laplacian matrix L of a graph G is

L = I − T−1/2AT−1/2,

where T denotes the diagonal degree matrix with (u, u) entry equal to d(u) and A denotes 
the adjacency matrix. Throughout, we assume G is simple, meaning G has no loops or 
multiple edges. We write the eigenvalues of L in increasing order, where

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.

It is well-known (cf. [6]) that the second eigenvalue or spectral gap of L is nonzero if and 
only if G is connected, and can be characterized as

λ1 = inf
f∑

u f(u)d(u)=0

∑
u∼v

(f(u) − f(v))2

∑
v

f(v)2d(v)
,

with corresponding eigenvector g = T 1/2f . We call the nontrivial function f achieving 
the above infimum the harmonic eigenfunction of L. Landau and Odlyzko proved the 
following lower bound on λ1.

Theorem 1 (Landau, Odlyzko [12]). For a connected graph on n vertices with maximum 
degree Δ and diameter D, we have

λ1 ≥ 1
nΔ(D + 1) .

In [6], Chung gives an improved lower bound on λ1 in terms of the graph’s diameter 
and volume, where vol(G) =

∑
u∈V (G) d(u).

Theorem 2 (Chung [6]). For a connected graph G with diameter D, we have

λ1 ≥ 1
D · vol(G) .
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For symmetrical graphs, stronger lower bounds may be obtained. For example, Chung 
showed that for a vertex-transitive graph with degree k and diameter D, we have

λ1 ≥ 1
kD2 .

In this paper, we have two main results. First, we improve the constant in the state-
ment of Theorem 2.

Theorem 3. For a connected graph G with diameter D, we have

λ1 ≥ 4
D · vol(G) .

The above lower bound is in fact asymptotically best possible (see further discussions 
later in Remark 3). Second, we examine the minimal value of λ1 over all connected 
graphs on n vertices.

Theorem 4. The minimum normalized Laplacian spectral gap α(n), defined by

α(n) = min{λ1(G) : G is a simple, connected graph on n vertices}

satisfies

α(n) ∼ 54
n3 .

As an immediate consequence of Theorem 4, we confirm a conjecture of Aldous and 
Fill on relaxation time. The relaxation time τ of a random walk on a (connected) graph 
G with probability transition matrix P = T−1A is defined as

τ(G) = 1
1 − ρn−1

,

where ρ1 ≤ · · · ≤ ρn−1 < ρn = 1 denote the eigenvalues of P . A central problem 
in the study of random walks is to determine the mixing time, the required number 
of steps in the random walk guaranteeing closeness to the stationary distribution. As 
seen throughout the literature [1,6,13], the eigenvalue ρn−1 and hence the relaxation 
time is the primary term controlling mixing time. Therefore, relaxation time is directly 
associated with the rate of convergence for a random walk. At least as early as 1994, 
Aldous and Fill [1, Problem 6.13, p. 216] conjectured the following concerning relaxation 
time:

Conjecture 1 (Aldous and Fill, c. 1994). The maximum relaxation time β(n), defined by

β(n) = max{τ(G) : G is a simple, connected graph on n vertices},
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Fig. 1. The double kite graph DK(8, 6).

satisfies

β(n) ∼ n3

54 .

In [1], Aldous and Fill showed that β(n) is bounded above by (1 + o(1))2n3

27 . In gen-
eral, Conjecture 1 fits into a body of work addressing extremal problems for random 
walk parameters. For example, Brightwell and Winkler [4] found the maximum hitting 
time between two vertices over all n-vertex graphs and determined the extremal graphs 
are lollipop graphs. Relatedly, Mazo considered maximum and minimum mean hitting 
time [15]. Furthermore, Feige obtained sharp upper bounds on cover time [9,10], and 
Coppersmith, Tetali, and Winkler found the maximum commute time [7].

It is easy to see that T−1/2LT 1/2 = I − T−1A, and hence λi is an eigenvalue of L if 
and only if 1 −ρi is an eigenvalue of T−1A. Consequently, the relaxation time of a graph 
may equivalently be written as τ = 1/λ1 and so Theorem 4 confirms Conjecture 1.

Corollary 1. The maximum relaxation time β(n) for the random walk on a simple, con-
nected graph on n vertices satisfies β(n) ∼ n3/54. The extremal value β(n) is achieved 
asymptotically by a double kite graph, DK(n3 , 

n
3 ).

The double kite graph can be defined as follows:

Definition 1. A double kite graph, denoted DK(r, s), consists of two copies of the r-vertex 
complete graph Kr and a path connecting them, p0, p1, . . . , ps, ps+1, where p0 is a selected 
vertex from one copy of Kr and ps+1 is a selected vertex from the other copy of Kr. See 
Fig. 1 for an illustration.

Remark 1. In [1], Aldous and Fill call DK(r, s) the barbell graph. The specific cases of 
DK(n2 , 0) as well as DK(n3 , 

n
3 ) have also both been commonly referred to as the barbell 

graph (e.g., see [11] and [17] respectively).

Remark 2. Landau and Odlyzko also consider the construction DK(n3 , 
n
3 ) to show that 

the n3 order of magnitude implied by their bound (Theorem 1) is best possible. Applying 
their bound to this construction yields λ1 ≥ (1 + o(1)) 9

n3 , while we show, λ1 ∼ 54
n3 .

Remark 3. We note that the bound in Theorem 3 is asymptotically tight for DK(n3 , 
n
3 ), 

yielding λ1 ≥ (1 + o(1)) 54
3 . In general, however, the lower bound 4/D · vol(G) may 
n
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be off by orders of magnitude. For example, applying the bound to the d-dimensional 
hypercube graph on n = 2d vertices yields λ1 ≥ 4

n·log2
2(n) yet λ1 = 2

log2(n) . On the other 
hand, in Section 2 we show Theorem 3 is sharp in a strong sense: for a wide range of D
and vol(G) there is an infinite sequence of graphs for which it is tight asymptotically, 
including the multiplicative constant.

In addition to its interpretation in the random walk setting, Theorem 4 is also part of 
the literature surrounding extremal spectral graph theory, where one optimizes a spectral 
invariant over a fixed family of graphs. Such problems were first formalized by Brualdi 
and Solheid [5] and since then have attracted attention from many researchers. Rather 
than give a broad survey of such work, we briefly mention a few results directly relevant 
to ours. For the spectral gap of the adjacency matrix, Stanic [16] proved some lower 
bounds for the spectral gap of the adjacency matrix, and conjectured that double kite 
graphs minimize the adjacency spectral gap. For the combinatorial Laplacian, Fallat and 
Kirkland [8] find the combinatorial Laplacian algebraic connectivity minimizing graphs 
over all n-vertex trees with given diameter. Brand, Guiduli, and Imrich [3] minimized λ1
of the Laplacian over all 3-regular graphs, and characterized the extremal graphs. For 
the general case, [2] showed that the n-vertex graphs minimizing algebraic connectivity 
must consist of a chain of cliques.

The remainder of the paper is structured as follows: in Section 2, we prove a lemma 
from which Theorem 3 follows as a corollary and show Theorem 3 is sharp for a wide 
range of values of D and vol(G). In Section 3, we apply this lemma, among others, to 
also prove Theorem 4. In Section 4, we conclude by mentioning related open problems.

2. Proof of Theorem 3

In this section, we establish the lemma from which Theorem 3 will follow as a corollary. 
To establish this lemma, we first require the solution to a related optimization problem.

Proposition 1. Fix (d1, . . . , dn) ∈ N
n. Let (f1, . . . , fn) be a sequence minimizing the 

quantity

(fn − f1)2

subject to the constraints

n∑
i=1

fidi = 0, (1)

n∑
i=1

f2
i di = 1, (2)

and
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f1 ≤ fk ≤ fn

for all k. Then for all k either f1 = fk or fn = fk.

Proof. First we consider the optimization problem without the constraint that f(1) ≤
f(k) ≤ f(n). In this case, consider the Lagrangian

(fn − f1)2 − α

(
n∑

i=1
fidi

)
− β

(
n∑

i=1
f2
i di − 1

)
.

We show that either we are on the boundary where there exists a k such that f(1) = f(k)
or f(n) = f(k), or the critical point of this Lagrangian maximizes the objective function 
(fn − f1)2, and so the minimum must occur on the boundary. A critical point of the 
Lagrangian occurs when

2 (fn − f1) − αdn − 2βfndn = 0 (3)

−2(fn − f1) − αd1 − 2βf1d1 = 0 (4)

αdi + 2βfidi = 0, (5)

for i = 2, . . . , n − 1. If β = 0, then from Eq. (5), α = 0, in which case subtracting Eq. (3)
from Eq. (4) yields f1 = fn. But from the definitions of f and d and Eq. (1), it is clear 
fn > 0 and f1 < 0. So β �= 0 and fi = − α

2β for i = 2, . . . , n − 1. Applying this fact and 
rewriting Eqs. (1) and Eq. (2) yields

f1d1 + fndn = α

2β

n−1∑
i=2

di, (6)

f2
1 d1 + f2

ndn = 1 − α2

4β2

n−1∑
i=2

di. (7)

Adding Eqs. (3) and (4), then applying Eq. (6) yields

α

n∑
i=1

di = 0,

from which we can see that α = 0. Now, Eqs. (5), (6), (7) tell us fi = 0 for i = 2, . . . , n −2, 
and

f1d1 + fndn = 0,

f2
1 d1 + f2

ndn = 1.
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Rewriting the former equation above, we get f1 = −c ·dn and fn = c ·d1 for c := fn/d1. 
Plugging this into the latter, we find

c2 = 1
d1dn(d1 + dn)

.

Finally, we have

(fn − f1)2 = c2(d1 + dn)2 = 1
d1

+ 1
dn

.

We claim that this is the maximum value of (fn− f1)2 subject to the constraints. To see 
this, note that letting

f1 = f2 = −
√

dn
(d1 + d2)(d1 + d2 + dn) , fn =

√
d1 + d2

dn(d1 + d2 + dn) ,

satisfies all of the constraints and gives

(fn − f1)2 = 1
d1 + d2

+ 1
dn

,

which is smaller than 1
d1

+ 1
dn

since d2 ≥ 1. Therefore, the only critical point of the 
Lagrangian interior to the boundary is a maximum, and thus the minimum must occur 
when there is a k such that f1 = fk or fn = fk. In this case, we may substitute for fk, 
and we are left with a similar optimization problem in n − 1 variables, where we have 
eliminated the variable fk and replaced d1 with d1 + dk if f1 = fk or dn by dn + dk if 
fn = fk. We may use this argument repeatedly to show that the minimum must occur 
on the boundary until there are only 2 variables remaining. At this point, the objective 
function is constant subject to the constraints, and we are done. �

We now prove the lemma from which Theorem 3 will follow. Let G be a connected 
graph with normalized Laplacian eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1, and let f be a 
harmonic eigenvector for λ1. Once f is fixed, let u and v be vertices corresponding to 
minimum and maximum entries of f respectively. That is, for all z ∈ V (G) we have 
f(u) ≤ f(z) ≤ f(v). Further, let

volP =
∑

z:f(z)≥0

d(z),

volN =
∑

z:f(z)<0

d(z).

Lemma 1. Let G be a connected graph with f a harmonic eigenvector for λ1 of its nor-
malized Laplacian. Let u and v be vertices which minimize and maximize f respectively, 
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and let volP and volN be defined as above. Then

λ1 ≥ 2
dist(u, v)

√
volP · volN

.

Proof. Let f be a harmonic eigenvector for λ1, and let u and v be vertices which minimize 
and maximize f respectively, so f(u) ≤ f(z) ≤ f(v) for all z ∈ V (G). Let S be a shortest 
path from u to v. Then,

λ1 =
∑

x∼y(f(x) − f(y))2∑
x(f(x))2d(x)

≥
∑

xy∈S(f(x) − f(y))2∑
x(f(x))2d(x)

≥
1
|S| (f(u) − f(v))2∑

x(f(x))2d(x) ,

where the last inequality is by Cauchy–Schwarz. Now, since f is a harmonic eigenvector, 
we have

∑
x

f(x)d(x) = 0.

We may without loss of generality scale f so that

∑
x

(f(x))2d(x) = 1.

By Proposition 1, we have that the quantity (f(u) −f(v))2 is bounded below by (c2−c1)2
where c1 and c2 satisfy

∑
x∈N

c1d(x) +
∑
x∈P

c2d(x) = 0,

and

∑
x∈N

c21d(x) +
∑
x∈P

c22d(x) = 1.

If c1 and c2 satisfy this system, then we have

c1 = −
√

volP
vol2 + vol vol

, c2 =

√
volN

vol2 + vol vol
.

N P N P P N
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Thus we have

λ1 ≥ 1
dist(u, v)

(√
volN

vol2P + volPvolN
+

√
volP

vol2N + volPvolN

)2

.

Using calculus, one can see that
(√

volN
vol2P + volP volN

+

√
volP

vol2N + volPvolN

)2

≥ 2√
volPvolN

. �
As a corollary of this, we can now prove Theorem 3.

Proof of Theorem 3. Note that vol(G) = volP + volN , and so the AM–GM inequality 
gives us

vol(G)
2 ≥

√
volP · volN .

Now, if D is the diameter of G, we have by Lemma 1 that

λ1 ≥ 2
dist(u, v)

√
volP volN

≥ 2
D
√

volPvolN
≥ 4

D · vol(G) . �
Next we give a family of constructions showing that Theorem 3 is sharp.

Proposition 2. Let D and d be fixed, and let n −D + 1 be divisible by 4. Let H1 and H2
be d-regular graphs on n−D+1

2 vertices, and let H be the graph obtained by joining H1
and H2 by a path of length D. Then

λ1(H) ≤ 4
Dd(n−D) .

Proof. Label the vertices on the path between H1 and H2 as p0, p1, . . . , pD, where the 
terminal vertices p0 and pD belong to H1 and H2 respectively. Define f : V (H) → R by

f(u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if u ∈ H1,

−1 if u ∈ H2,

1 − 2i
D if u = pi.

One may check that 
∑

u f(u)d(u) = 0, and hence

λ1 ≤
∑

u∼v(f(u) − f(v))2∑
v f(v)2d(v) ≤

∑
u∼v(f(u) − f(v))2

(n−D)d =
∑D

i=1(f(pi) − f(pi−1))2

(n−D)d

=
D

( 2
D

)2
(n−D)d . �
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Now, given H we have that vol(H) = (n −D + 1)d + 2D and the diameter of H is at 
most D+diam(H1) +diam(H2). Therefore, as long as we have d(n −D+1) +2D ∼ d(n −D)
and diam(H1) +diam(H2) = o(D), then the lower bound in Theorem 3 is asymptotically 
tight for λ1(H) as n goes to infinity. Since we may choose d-regular graphs with diameter 
O(logn), for any D and V satisfying D 	 logn and n 
 V ≤ n2

2 , there is a sequence of 
graphs with diameter asymptotic to D and volume asymptotic to V for which the bound 
in Theorem 3 is asymptotically sharp.

3. Proof of Theorem 4

We first prove an upper bound on α(n), which is straightforward by considering the 
double kite graph.

Claim 1.

α(n) ≤ (1 + o(1)) 54
n3 .

Proof. Consider G = DK(n3 , 
n
3 ). By Proposition 2 we have λ1(G) ≤ (1 + o(1)) 54

n3 . �
It remains to prove that α(n) ≥ (1 + o(1)) 54

n3 . To do so, we will use Lemma 1 from 
Section 2, as well as an additional lemma below that establishes a key property of the 
extremal graphs. Henceforth, we assume G achieves α(n) with harmonic eigenvector f
satisfying

λ1 =
∑

x∼y(f(x) − f(y))2∑
x(f(x))2d(x) .

Let

P = {z ∈ V (G) : f(z) ≥ 0},

N = {z ∈ V (G) : f(z) < 0}.

Further, let u and v satisfy f(u) ≤ f(z) ≤ f(v) for all z ∈ V (G) and let S be a shortest 
path from u to v.

Lemma 2. If G achieves α(n), then the number of edges with one endpoint in N and the 
other in P satisfies

1 ≤ e(N,P ) ≤ n− 1.

Proof. Since f is a harmonic eigenvector, we have 
∑

x f(x)d(x) = 0 and so f(u) < 0 <
f(v). Therefore, there must be an edge in S that has one endpoint in N and the other 
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in P . To see the upper bound, we claim that any edge with one endpoint in N and the 
other in S must be a bridge. To see this, let

a =
∑
x∼y

(f(x) − f(y))2,

and

b =
∑
x

(f(x))2d(x),

so that λ1 = a
b . Now let e = wz be an edge with one endpoint in N and the other 

in P , and let G′ = G \ {e}. Furthermore, let d′(x) be the degree sequence of G′, and let 
f ′(x) = f(x) + c where c is chosen so that 

∑
x f

′(x)d′(x) = 0. So

0 =
∑
x

(f(x) + c) d′(x) =
∑
x

(f(x) + c) d(x) − f(w) − c− f(z) − c

=
∑
x

f(x)d(x) + c
∑
x

d(x) − f(z) − f(w) − 2c

= c
∑
x

d(x) − 2c− f(z) − f(w).

We get

c = f(z) + f(w)∑
x d(x) − 2 . (8)

If RG(f) is the Rayleigh quotient of graph G with harmonic eigenfunction f , then 
define c1, c2 so that

RG′(f ′) = a− c1
b− c2

,

where c1, c2 > 0. It is easily seen that

a− c1
b− c2

<
a

b

if and only if

λ1 = a

b
<

c1
c2

.

By definition of f ′ and G′, we have c1 = (f(w) − f(z))2 > f(w)2 + f(z)2, since 
f(w)f(z) < 0. Also,
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c2 =
∑
x

f(x)2d(x) −
∑
x

f ′(x)2d′(x)

=
∑
x

f(x)2d(x) −
(∑

x

(f(x) + c)2d(x) − (f(z) + c)2 − (f(w) + c)2
)

= f(z)2 + f(w)2 + 2c(f(z) + f(w)) − c2

(∑
x

d(x) − 2
)
.

Using Expression (8) we get

c2 = f(z)2 + f(w)2 + (f(z) + f(w))2∑
x d(x) − 2 ≤ f(z)2 + f(w)2 + f(z)2 + f(w)2∑

x d(x) − 2 ,

again using the fact that f(w)f(z) < 0. Combining these, we get

c1
c2

>
f(z)2 + f(w)2

f(z)2 + f(w)2 + f(z)2+f(w)2∑
x d(x)−2

= 1
1 + (

∑
x d(x) − 2)−1 .

If G′ is connected, we have the (very weak) bound 
∑

x d(x) −2 > 2n −4, so for any ε > 0
if n is large enough we have c1c2 > 1 −ε > λ1. Therefore deleting this edge would decrease 
λ1. By minimality we conclude that e is a bridge. Now, given a connected graph, take 
any connected spanning tree. Since any edge not on this spanning tree cannot disconnect 
the graph, there can be at most n − 1 bridges, giving us the upper bound. �

We are now in a position to prove a lower bound on α(n), which completes our proof 
of Theorem 4.

Claim 2.

α(n) ≥ (1 + o(1)) 54
n3 .

Proof. Assume G achieves α(n). Let P ′ = P \ S and N ′ = N \ S, and let |P ′| = α1n, 
|N ′| = α2n, and |S| = α3n. So α1 + α2 + α3 = 1. Now, since S is a shortest path from 
u to v, we have that any vertex in V (G) \ S may have at most 3 neighbors on S, and 
any vertex in S may have at most 2 neighbors in S. Letting GP and GN be the graphs 
induced by P and N , respectively, note that

volP = 2e(GP ) + e(N,P ),

and

volN = 2e(GN ) + e(N,P ).
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Putting these facts together, we have

2e(GP ) ≤
∑
z∈P

d(z) ≤ |P ′|2 + 2e(P ′, S) + 2|S| ≤ |P ′|2 + 6|P ′| + 2|S| ≤ α2
1n

2 + 8n.

By Lemma 2 we have that volP ≤ α2
1n

2 +9n. Similarly, volN ≤ α2
2n

2 +9n. By Lemma 1, 
we have

λ1 ≥ 2
|S|

√
volP volN

≥ (1 + o(1)) 2
α1α2α3n3 .

Since α1 + α2 + α3 = 1, this quantity is minimized when α1 = α2 = α3 = 1
3 , and so

λ1 ≥ (1 + o(1)) 54
n3 . �

4. Problems and remarks

In this paper, we proved an asymptotically sharp lower bound on the normalized 
Laplacian spectral gap of a connected graph. However, many questions remain unan-
swered. Here we mention several related problems:

• Characterize the extremal graphs for which λ1 = α(n). One might guess that all such 
extremal graphs are double kite graphs for large enough n, but we were not able to 
prove this.

• Prove the corresponding theorem for the adjacency matrix: Stanic [16] conjectured 
that double kite graphs minimize the adjacency spectral gap.

• Minimize λ1 of the normalized Laplacian over the family of all regular graphs. Aldous 
and Fill [1] conjectured that the minimum is (1 + o(1)) 2π2

3n2 and is achieved by a 
necklace graph. An affirmative answer to this conjecture was given for 3-regular 
graphs by [3], but the general case is still open.
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