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Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to
engineering to biology. This article is focused on generative models of large-scale bipartite graphs, also
known as two-way graphs or two-mode networks. We propose two generative models that can be easily
tuned to reproduce the characteristics of real-world networks, not just qualitatively but quantitatively. The
characteristics we consider are the degree distributions and the metamorphosis coefficient. The metamor-
phosis coefficient, a bipartite analogue of the clustering coefficient, is the proportion of length-three paths
that participate in length-four cycles. Having a high metamorphosis coefficient is a necessary condition
for close-knit community structure. We define edge, node and degreewise metamorphosis coefficients,
enabling a more detailed understanding of the bipartite connectivity that is not explained by degree dis-
tribution alone. Our first model, bipartite Chung–Lu, is able to reproduce real-world degree distributions,
and our second model, bipartite block two-level Erdös–Rényi, reproduces both the degree distributions as
well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on
several real-world data sets.

Keywords: bipartite generative graph model; two-way graph model; two-mode network; metamorphosis
coefficient; bipartite clustering coefficient; complex networks.

1. Introduction

Network science is a powerful tool for analysing complex systems in fields ranging from sociology
to engineering to biology. The ability to develop realistic models of the networks is needed for several
reasons. Pragmatically, we need to generate artificial networks to facilitate sharing of realistic network data
while respecting concerns about privacy and security of data. More generally, generative models enable
unlimited network data generation for computational analysis, for example, varying the characteristics
of the graph to test a graph algorithm under different scenarios. Ultimately, we hope to understand
the underlying nature of complex systems, and modelling them mathematically is a way to test our
understanding.

This article is focused on generative models of bipartite graphs, also known as two-way graphs or
two-mode networks. Many real-world systems are naturally expressed as bipartite graphs. The defining
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582 S. G. AKSOY ET AL.

Fig. 1. Bipartite graph.

characteristic of a bipartite graph is that its vertices are divided into two partitions, U and V , such that
edges, E, only connect vertices across the two partitions, that is

G = (U, V , E) with U ∩ V = ∅ and E ⊆ U ⊗ V .

Examples of bipartite graphs include author–paper networks, user–product purchase histories, user–
song play lists, actor–movie connections, document–keyword mappings and so on. Hypergraphs can be
represented as bipartite graphs in the sense of an incidence graph: the nodes and hyperedges are rep-
resented by U and V , respectively, and edge (i, j) exists if node i is in hyperedge j. Bipartite graphs
have been widely studied; see [1–6] and references therein. An example bipartite graph is shown
in Fig. 1.

We propose a generative model that can be easily tuned to reproduce the characteristics of real-world
networks, not just qualitatively but quantitatively. The measurements we consider in this article are the
degree distributions and the bipartite analogue of the clustering coefficient. Of course, there are many
other measurements that we could consider, and we come back to those shortly. The degree distribution is
the number (or proportion) of nodes of degree d for each d = 1, 2, . . . . A bipartite graph has two degree
distributions, one for each vertex partition. As we see in the results in Section 4.3, these two distributions
may be quite different from one another, in part because the size (and, consequently, the average degree)
for each partition may be quite different. The clustering coefficient of a one-way graph, introduced by
Holland and Leinhardt [7], is the probability that a two-path (or wedge) participates in a three cycle (or
triangle); i.e.,

c = 3n�

n∧
= 3× (total number of triangles)

total number of wedges
.

One characteristic of a bipartite graph is that is has no odd-length cycles; hence, it cannot have a triangle.
Robins and Alexander [5] propose a bipartite clustering coefficient that is the probability that a bipartite
three-path (or caterpillar) participates in a bipartite four cycle (or butterfly), i.e.,

c = 4n

n
= 4× (total number of butterflies)

total number of caterpillars
. (1.1)

We call c in (1.1) the metamorphosis coefficient in reference to the notion of how often caterpillars become
butterflies. Opsahl [8] says “it could be considered a measure of reinforcement between two individuals
rather than clustering of a group of individuals.” The multiplier of four in the numerator is because every
butterfly contains four distinct caterpillars, just as every triangle contains three distinct wedges; see Fig. 2.
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MEASURING AND MODELING BIPARTITE GRAPHS 583

(a) (b)

Fig. 2. A butterfly contains four distinct caterpillars.

A high metamorphosis coefficient in a bipartite graph is indicative of greater community structure in the
graph, analogous to the role of a high clustering coefficient in a one-way graph. The metamorphosis
coefficient plays an important role in communities because any tight-knit community will have a high
metamorphosis coefficient. In fact, Sariyuce and Pinar [9] have recently shown that butterflies are the key
to identifying dense substructures, corresponding to highly connected communities, in bipartite graphs.
In Section 5.1, we extend (1.1) to define edge, node and degreewise metamorphosis coefficients, enabling
a more detailed understanding of the bipartite community structure.

As mentioned above, there are numerous more complex metrics that can be used in the analysis of
bipartite graphs; see, e.g., [4, 5]. Examples of such metrics include graph diameter (i.e., the maximum
distance between any pair of nodes), singular values of the adjacency matrix, centrality measures, joint
degree distributions (i.e., the proportion of nodes of degree d that connect to nodes of degree d ′ for all
possible pairs (d, d ′)), assortativity (i.e., degree correlations), subgraph census (i.e., counts of all patterns
of three nodes, four nodes, and so on). Barber [10] introduced a bipartite modularity coefficient, extending
one-way Newman–Girvan modularity graph modularity to the bipartite case. Using this measure requires
a partitioning of the vertices into communities, and finding a partition that maximizes Barber’s modu-
larity coefficient has been shown to be NP-hard [11]. Other metrics result by considering the product
graph that is produced by considering just one vertex partition and connecting any two nodes that share a
common neighbour in the bipartite graph. However, any analysis of bipartite community structure based
solely on product graphs is fundamentally limited due to the structural information lost in the product
graph [3, 4, 9, 12]. Because these quantities are often expensive to compute for large graphs, we do not
consider them in this article. Instead, we consider the simpler metrics of degree distribution and meta-
morphosis coefficients here for reasons analogous to those considered by [4, 13]. The degree distributions
are interesting because many large real-world graphs (including the ones we consider here) do not have
the Poisson distributions that occur if edges are distributed at random; instead, they have heavy-tailed
distributions (hypothesized to be power law [14] or log-normal [15]). The metamorphosis coefficient
is interesting because random graphs that have the same degree distribution as a real-world graph tend
to have a much lower metamorphosis coefficients, as we show in Section 4.4. This is a well-known
phenomenon for the clustering coefficient of one-way graphs [16]. We contend that matching metamor-
phosis coefficients is critical for capturing social or, more generally, interconnectedness behaviour in
networks.

With the goals of capturing both degree distribution and our newly defined degreewise metamorphosis
coefficients, we develop two different models. The first is a straightforward extension of Chung–Lu (CL)
[17–19], which is very closely related to the configuration model. Our experimental results show that this
model is effective at reproducing the degree distributions. However, the bipartite CL graphs do not produce
the same metamorphosis coefficients as observed in real-world networks. Therefore, the second model we
propose is a bipartite extension of the Block Two-Level Erdős–Rényi (BTER) [13, 15] model. The BTER
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584 S. G. AKSOY ET AL.

model is a good starting point because it reproduces both the degree distribution and degreewise clustering
coefficients of a given network. To do so, it groups nodes into Erdős–Rényi (ER) subgraphs, called affinity
blocks, that are highly connected and so produce high-clustering coefficients. We propose a bipartite
BTER that reproduces both the degree distributions and the degreewise metamorphosis coefficients. This
extension is not straightforward since the affinity block concept does not carry over easily to the bipartite
case, so we develop a new method for creating the blocks. Computational results for bipartite BTER show
that it achieves our goals of matching both the degree distributions and the degreewise metamorphosis
coefficients.

For some of the other expensive metrics mentioned above, we briefly speculate on the performance
of bipartite BTER. For instance, the largest singular values should be on the same order of magnitude,
since these values rely in part on degree distribution. We may expect good results in terms of the subgraph
consensus, since the affinity blocks will produce other structures beyond butterflies. Conversely, the simple
model has no mechanism to match the joint degree distribution or assortativity. Community structure is
more complex: bipartite BTER creates butterflies that are key to small tight-knit communities, but the
model as described in this article, does not necessarily produce a hierarchy of dense structures (i.e.,
larger yet sparse communities that agglomerate the smaller dense blocks). In particular, we stress that it
produces a large number (hundreds to millions) of small affinity blocks, in contrast to methods that focus
on modularity with respect to a small number (two to twenty) of communities. In Section 6, we discuss
the possibility of extending the bipartite BTER model to group affinity blocks to produce a hierarchy of
loosely knit communities, but we do not pursue that avenue in this work.

Before we continue, we briefly survey other models which fall into two classes. The first class is
bipartite configuration models which, as mentioned above, are very similar to our proposed bipartite CL
model. These can be implemented efficiently and scale to large graphs, but they may not reproduce the
metamorphosis coefficient. Both Newman et al. [20] and Guillaume and Latapy [3] propose bipartite
configuration models that sample node degrees from a distribution (one per partition), create stubs for
each node equal to its degree, and then match the stubs. Our bipartite CL model is very similar, and
we discuss the connections further in Section 4.2. Guillaume and Latapy [3] considered the clustering
coefficients of the product graph, but this may be viewed as being a direct consequence of matching
the bipartite degree distribution (a collapsed node of degree d creates a clique of size d in the product
graph) and so is different than the metamorphosis condition considered here. The second class are models
that are more sophisticated but do not scale to large graphs. On the theoretical side, Kannan et al. [21]
consider the convergence of a Markov chain rewiring algorithm for generating a bipartite graph and
show that their process is rapidly mixing for regular bipartite graphs, that is, graphs where all the node
degrees are the same. Later, this result was extended to graphs in which only one partition is required to
be regular [22]. In statistics, researchers consider the problem of generating binary contingency tables
with given row and columns sums. This problem is equivalent to specifying the degrees in a bipartite
graph. In [23, 24], the focus is on an algorithm that is guaranteed to produce a specified row and
column sums, assuming its realizable. The proposed algorithm is not considered practical but rather of
theoretical interest. As for one-way graphs, there are also incremental growth models in which the output
graph is iteratively constructed by adding vertices and edges according to some rule. The methods are
sequential since the connections created for new nodes usually depend on the state of the graph at the
iteration in which the nodes are created. Guillaume and Latapy [3] analyse a bipartite growing model
in which new vertices are linked via a preferential attachment process. Other work has considered a
similar idea except that one vertex partition remains fixed while the other grows [25, 26]. Lastly, we
note a variety of application-specific generative bipartite graph models have been introduced to model
specific networks, including pollination networks in ecology [27, 28], and protein-domain networks in
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MEASURING AND MODELING BIPARTITE GRAPHS 585

Table 1 Real-world bipartite graphs

Name Partition 1 Partition 2 Edges

CondMat [30, 31] 16,726 authors 22,016 papers 58,595
IMDB [4, 32] 127,823 actors 383,640 movies 1,470,418
Flickr [33, 34] 1,728,701 users 103,648 groups 8,545,307
MovieLens [35, 36] 65,133 movies 71,567 critics 10,000,054
MillionSong [37–39] 1,019,318 users 384,546 songs 48,373,586
Peer2Peer [4, 32] 1,986,588 peers 5,380,546 files 55,829,392
LiveJournal [33, 34] 5,284,451 users 7,489,296 groups 112,307,385

biology [29]. We stress that the biggest difference between bipartite BTER and the models in the second
group is scalability.

2. Data sets

We test our methods on publicly available real-world datasets, whose properties are summarized in
Table 1. Their degree distributions are shown in Figs 3–5. CondMat represents an author–paper network
from arXiv preprints in condensed matter physics from 1995–1999 [30]; this has mostly been used in the
context of the coauthorship graph, but here we consider the underlying data [31]. The majority of authors
have only 1 paper, whereas the most prolific author has 116 papers. Conversely, the most coauthors on a
single paper is 18, and the most likely scenario is for a paper to have 2 or 3 authors. IMDB links movies
and the actors that appeared in them [4, 32], as collected from the Internet Movie Database. The busiest
actor was in 294 movies; conversely, the largest production had 646 actors. Flickr [33, 34] is an online
photo-sharing site, and the network represents group membership of various users. The most connected
user is in 2186 groups, whereas the largest group has 34989 members. MovieLens [35, 36] is a very
famous dataset that links movies and their reviewers/critics. The most-reviewed movie had 34864 reviews,
and the most active critic reviewed 7359 movies. This dataset apparently excludes critics with less than
20 reviews. The MillionSong [37–39] dataset connects users and the songs they played. The dataset only
includes listeners of 10 songs or more. The widest ranging user listened to 4,400 distinct songs. The top
song was played by 110,479 distinct listeners. The Peer2Peer dataset [4, 32] links users (peers) and the
files they uploaded or downloaded. The busiest user touched 19,496 files. On the other hand, the most
popular file only had 3396 downloads. LiveJournal [33, 34] represents user–group memberships from a
blogging site. The most engaged user is in 300 groups, which appears to be the maximum allowed, since
there are 5 persons in that category. The largest group has over one million members.

3. Notation

We set up the notation for one-way and two-way graphs in Table 2. We assume all graphs are simple,
meaning that there are no multiple edges. In the one-way case, we let n = |V | and index nodes in V by
i, j ∈ {1, . . . , n}. In the two-way case, we let nu = |U| and nv = |V | denote the sizes of partitions one
(left) and two (right), respectively. We use i ∈ {1, . . . , nu} and j ∈ {1, . . . , nv} to index nodes in partition
one and two, respectively. Without loss of generality, indexing by i assumes partition one and likewise
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586 S. G. AKSOY ET AL.

Table 2 Notation

One-way graph Two-way graph

G = (V , E) G = (U, V , E)

Vertices : V Vtx. Partition 1 : U
Vtx. Partition 2 : V

Edges : E ⊆ V ⊗ V Edges : E ⊆ U ⊗ V
# Vertices : n = |V | # Vertices in U : nu = |U|

# Vertices in V : nv = |V |
# Edges : m = |E| # Edges : m = |E|

# Wedges : n∧ # Caterpillars : n
# Triangles : n� # Butterflies : n

Clust. Coeff. : c = 3n�/n∧ Meta. Coeff. : c = 4n /n
Vertex Index : i ∈ {1, . . . , n} Index in U : i ∈ {1, . . . , nu}

Index in V : j ∈ {1, . . . , nv}
Degree of i : di = |{j ∈ V |(i, j) ∈ E}| Degree of i : du

i = |{j ∈ V |(i, j) ∈ E}|
Degree of j : dv

j = |{i ∈ U|(i, j) ∈ E}|

for j and partition two. For instance, if i = j = 2 in the two-way case, although vertices i and j have the
same vertex label of 2, they belong to different partitions and are thus two distinct vertices.

4. Fast bipartite CL model

We adapt the CL generative model [17–19] to bipartite graphs and demonstrate its ability to reproduce
bipartite degree distributions. We follow the notation described in Section 3.

4.1 CL for one-way graphs

Consider a one-way graph G = (V , E). The CL model attempts to match the desired degrees {d1, . . . , dn},
where di denotes the desired degree of vertex i. The model generates a random graph on n vertices such
that the probability that vertex i is adjacent to j is given by

Pr((i, j) ∈ E) = didj

2m
, where m = 1

2

n∑
i=1

di = desired number of edges.

To ensure the quantities are all true probabilities, we assume di ≤
√

2m for all i. A classical implementation
of the CL model on n vertices flips a coin for each of the

(n
2

) = �(n2) possible edges. Many real-world
graphs are large and sparse, that is, the number of edges m = O(n). For this reason, we favour ‘fast’ CL
that flips only 2m coins [15, 40]. We explain the fast method below in the context of two-way graphs.

4.2 CL for two-way graphs

Consider the bipartite graph G = (U, V , E). Here we have separate desired degrees for the vertices in U
and V , denoted

{du
i }nu

i=1 and {dv
j }nv

j=1,
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MEASURING AND MODELING BIPARTITE GRAPHS 587

respectively. Necessarily, the sums of the degrees in each partition must be equal to each other and to the
number of edges, i.e.,

m =
nu∑

i=1

du
i =

nv∑
j=1

dv
j .

Hence, the bipartite CL model generates a random bipartite graph on nu vertices in the first partition and
nv vertices in the second partition such that

Pr((i, j) ∈ E) = du
i dv

j

m
. (4.1)

To ensure these are true probabilities, we assume du
i ≤
√

m for all i and dv
j ≤
√

m for all j. A naïve
implementation of bipartite CL would flip a coin for all nunv possible edges. Instead, we adopt the ‘fast’
approach as follows. Rather than flipping a coin for every possible edge, we instead randomly choose
two endpoints for every expected edge. Since the graph is sparse, we may assume that m� nunv, so this
approach requires many fewer random samples. For each of the m edges, we choose endpoints in U and
V proportional to

Pr(i) = du
i

m
and Pr(j) = dv

j

m
,

respectively. The probability that edge (i, j) exists is then given by

Pr((i, j) ∈ E) = m · Pr(i) · Pr(j) = du
i dv

j

m
,

which is the same as (4.1). Although both implementations of CL yield identical expected degrees, a key
distinction is that multiple edges between the same pair of vertices are possible in fast CL. In practice,
for large graphs with heavy-tailed degree distributions, this rarely presents a problem. The fast bipartite
CL algorithm is described in Algorithm 1.

Algorithm 1 Fast bipartite CL
1: procedure fbcl({du

i }, {dv
j })

2: m←∑
i du

i

3: E ← ∅
4: for k = 1, . . . , m do
5: Randomly select i ∈ U proportional to du

i /m
6: Randomly select j ∈ V proportional to dv

j /m
7: E ← E ∪ (i, j) � Duplicate edges discarded
8: end for
9: return E

10: end procedure
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(a) (b)

Fig. 3. Degree distributions illustrating the original (circles) versus bipartite fast Chung-Lu (diamonds). The data is log-binned.

As mentioned in Section 1, a closely related approach is the bipartite configuration model [3, 20].
These differ in some details; for instance, in the CL model, the degree distribution is not specified exactly
but rather each degree is sampled from a distribution. However, if we ignore that detail, we may consider
that each node i ∈ U has du

i stubs and likewise each node j ∈ V has dv
j stubs, and the stubs from

partition one are randomly connected to the stubs in partition 2. As with fast bipartite CL, we discard any
repeated edges. In all three cases, bipartite CL, fast bipartite CL and the bipartite configuration models,
the expected degree of a vertex is the same.

4.3 Experimental results

We generate random graphs using CL and the degree distributions of the graphs described in Section 2.
The degree distributions are shown in Figs 3–5. The degree distribution of the original graph is shown
in blue, and the degree distribution of the graph generated by bipartite CL is shown in orange. These
are binned degree distributions, as advocated in [41]. We use powers of two for the bin borders, so the
x-coordinate 2k corresponds to the bin from [2k , 2k+1). The y-coordinate is the average value for that
bin, including zero values, so the y-coordinate can be less than one. Overall, the degree distributions
are very close, especially for IMDB (Fig. 4a and b), Flickr (Fig. 4c and d) and LiveJournal (Fig. 5e
and f). For CondMat (Fig. 3a and b), the distribution of degrees on the author nodes is a close match,
but there is some trouble matching the paper degree distribution. The model slightly overestimates at
the higher end of the degree scale and underestimates at the lower end. This is largely due to the small
size of the graph and the very small distribution (maximum of 18 authors for a paper). For MovieLens
(Fig. 4e and f), the model generates a few ‘critic’ nodes of degree less than 20, even though no nodes
exist in the true degree distribution. A similar phenomenon occurs for the ‘user’ nodes in MillionSong.
In general, the CL model cannot handle gaps in the degree distribution because of Poisson distributions
in its expectations. In Peer2Peer (Fig. 5c and d), the number of degree-1 peer nodes is underestimated,
for reasons described in [40].

4.4 Shortcomings of bipartite CL

Overall, if we provide the degree distributions of a real-world graph, the fast bipartite CL model generates
a random graph whose degree distribution closely matches the degree distribution of the original graph.
However, the graphs generated by CL typically have many fewer butterflies than the original graphs.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Degree distributions illustrating the original (circles) versus bipartite fast Chung-Lu (diamonds). The data is log-binned.

Table 3 shows that the number of butterflies from bipartite CL is smaller than the original graph in every
case, and sometimes by one or more orders of magnitude (CondMat, IMDB, Peer2Peer). The number of
caterpillars for the original and the generated graphs on the other hand, is closer, so the metamorphosis of
the original graph is much higher than for the generated graph with low-butterfly counts. This indicates
that the bipartite CL model is omitting some important structure.

Note that the butterfly structure is what underlies the cohesive, close-knit structure in many real-world
graphs. Just as a triangle can be considered as the smallest unit of cohesion on one-way graphs, butterflies
can be considered as the smallest unit of cohesion in bipartite graphs. Conversely, without butterflies,
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Degree distributions illustrating the original (circles) versus bipartite fast Chung-Lu (diamonds). The data is log-binned.

a bipartite graph will not have a community structure. This is our motivation for considering a more
complex model in the next section.

5. Bipartite BTER model

In the BTER model for one-way graphs, the goal is to match both the degree distribution as well as the
degreewise clustering coefficients [13, 15]. Our goal here is to extend those notions to the bipartite case.
We use (1.1) as the bipartite definition of the clustering coefficient, though other metrics exist as surveyed
by Latapy et al. [4] and Opsahl [8].
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Table 3 Properties of the original and the bipartite CL graphs

Graph Size Edges Cats. Buts. Meta.
nu nv m n n c

CondMat-Orig 1.67e4 2.20e4 5.86e4 1.24e6 7.05e4 2.28e−1
CondMat-CL 1.67e4 2.20e4 5.86e4 2.22e6 3.57e2 6.43e−4

IMDB-Orig 1.28e5 3.84e5 1.47e6 8.56e8 3.50e6 1.64e−2
IMDB-CL 1.28e5 3.84e5 1.47e6 1.11e9 1.41e5 5.10e−4

Flickr-Orig 1.73e6 1.04e5 8.55e6 2.57e+12 3.53e+10 5.49e−2
Flickr-CL 1.73e6 1.04e5 8.39e6 2.20e+12 1.52e+10 2.78e−2

MovieLens-Orig 6.51e4 7.16e4 1.00e7 2.46e+13 1.20e+12 1.95e−1
MovieLens-CL 6.51e4 7.16e4 8.78e6 1.37e+13 5.34e+11 1.56e−1

MillionSong-Orig 1.02e6 3.85e5 4.84e7 2.21e+13 2.15e+11 3.89e−2
MillionSong-CL 1.02e6 3.85e5 4.81e7 2.59e+13 6.74e+10 1.04e−2

Peer2Peer-Orig 1.99e6 5.38e6 5.58e7 8.18e+11 3.80e9 1.86e−2
Peer2Peer-CL 1.99e6 5.38e6 5.58e7 1.20e+12 1.14e8 3.79e−4

LiveJournal-Orig 5.28e6 7.49e6 1.12e8 3.36e+14 3.30e+12 3.92e−2
LiveJournal-CL 5.28e6 7.49e6 1.11e8 3.31e+14 2.04e+12 2.47e−2

5.1 Degreewise metamorphosis coefficient

BTER matches the degreewise clustering coefficient, so we need a similar measure for bipartite graphs.
We describe the degreewise metamorphosis coefficient, which provides a more nuanced measurement
of bipartite community structure than the metamorphosis coefficient. To the best of our knowledge, this
idea has not been proposed before.

We define the metamorphosis of an edge (i, j) as

c(i,j) =

⎧⎪⎨
⎪⎩

n(i,j)

n(i,j)

= number of butterflies containing (i, j)

number of caterpillars centered at (i, j)
if n(i,j) > 0,

0 if n(i,j) = 0.

(5.1)

We know the number of caterpillars centered at (i, j) immediately from the degrees of its endpoints, that is

n(i,j) = (du
i − 1)(dv

j − 1). (5.2)

From this, we define the metamorphosis coefficients of vertices i ∈ U and j ∈ V as the mean value over
all edges incident to the vertex:

cu
i =

1

du
i

∑
(i,j)∈E

c(i,j) and cv
j =

1

dv
j

∑
(i,j)∈E

c(i,j). (5.3)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article-abstract/5/4/581/3091113 by guest on 26 August 2019



592 S. G. AKSOY ET AL.

We may consider (5.3) to be the bipartite analogue of the clustering coefficient of a vertex, as introduced
by Watts and Strogatz [42]. Finally, we can define the per-degree metamorphosis coefficients to be

cu
d =

1

|Ud |
∑
i∈Ud

cu
i and cv

d =
1

|Vd |
∑
j∈Vd

cv
j , (5.4)

where Ud and Vd denote the subsets of degree-d nodes, that is

Ud = {i ∈ U|du
i = d} and Vd = {j ∈ V |dv

j = d}.

Degreewise metamorphosis coefficients control for the effects of both vertex mode and vertex degree
on bipartite clustering. Accordingly, this metric may reveal insights otherwise lost in metrics based only
on the ratio of total butterfly to caterpillar counts. To illustrate, consider the CondMat author–paper
network, whose degreewise metamorphosis coefficients are shown by the blue line in Fig. 6c and d. The
degreewise metamorphosis coefficients are also binned in the same way that we binned the data for the
degree distributions: We use powers of two for the bins, so the x-coordinate 2k corresponds to the bin
from [2k , 2k+1). The y-coordinate is the average value for that bin. For the binning, we define cu

d = 0
for any degree such that |Ud | = 0 (i.e., when there are no nodes of degree d), and likewise for cv

c. We
see that degreewise metamorphosis coefficients in the author mode (Fig. 6c) are higher for low degrees
than for high degrees, meaning that authors with fewer papers tended to have higher proportion of repeat
collaborations than authors with many papers. Conversely, the paper mode (Fig. 6d) shows that authors
of papers with few authors tend to have more repeats of the same author set.

5.2 Affinity blocks

In BTER for one-way graphs, dense ER subgraphs are key to producing triangles. For bipartite BTER,
we will use dense bipartite ER subgraphs to produce butterflies. We refer to these dense ER subgraphs
as affinity blocks.

In (one-way) BTER, an affinity block ideally consists of a set of d + 1 vertices of degree d. The
connectivity of each block is computed according to the degree-d clustering coefficient. The bipartite
affinity blocks are similar in spirit, but the bipartite nature of the graph raises issues that require an entirely
new approach to the block construction.

The first key difference is that each affinity block in bipartite BTER consists of two sets of vertices,
one from each partition. While each partition set in an affinity block ideally contains vertices of the same
degree, the degrees do not necessarily match between partition sets. Indeed, in many bipartite graphs,
one partition set may have a very different range of degrees than the other, so attempting to create blocks
that match inter-partition degree is not a realistic goal.

Consequently, a second key difference concerns how we determine the sizes of the partition sets for
the affinity blocks. In the one-way BTER method, the size of each block only depends on the degree
of the vertices in the block. In the two-way case, the sizes of each partition set within a block are more
complicated.

To work out the calculations of sizes and connectivity for the blocks, we consider building a single
affinity block denoted by Ĝ = (Û, V̂ , Ê). Without loss of generality, we assume all nodes in Û want
degree d̂u and all nodes in V̂ want degree d̂v. Note that these degrees are with respect to the entire graph,
not the subgraph. We further assume all nodes in Û want metamorphosis coefficient ĉu and likewise
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MEASURING AND MODELING BIPARTITE GRAPHS 593

for V̂ and ĉv. When matching a real-world graph, we choose the degreewise metamorphosis coefficients
corresponding to the target degrees as defined in (5.4), that is,

ĉu = cd̂u and ĉv = cd̂v .

The goal is to determine the sizes n̂u = |Û| and n̂v = |V̂ | and the connectivity, ρ, which is the probability
of an edge between a node in n̂u and a vertex in n̂v, and thus the number of edges, |Ê|

For i ∈ Û, we can compute its expected metamorphosis coefficient as follows. By definition (5.3),
we have

cu
i =

1

du
i

∑
(i,j)∈E

c(i,j) = 1

du
i

⎛
⎝ ∑

(i,j)∈Ê

c(i,j) +
∑

(i,j)∈E\Ê
c(i,j)

⎞
⎠ ≈ 1

du
i

∑
(i,j)∈Ê

c(i,j). (5.5)

The last step comes from the assumption that nearly all butterflies in the larger graph come from the
affinity blocks. Using definition (5.1), we can rewrite (5.5) as

cu
i =

1

du
i

∑
(i,j)∈Ê

n(i,j)

n(i,j)

= 1

du
i

∑
(i,j)∈Ê

n(i,j)

(du
i − 1)(dv

j − 1)
. (5.6)

We have assumed that the degrees and clustering coefficients within Ĝ are constant, so (5.6) becomes

ĉu = 1

d̂u(d̂u − 1)(d̂v − 1)

∑
(i,j)∈Ê

n(i,j) =
2ni

d̂u(d̂u − 1)(d̂v − 1)
. (5.7)

The last equality uses the fact that the sum of butterflies involving edges of the form (i, j) is equal to two
times the number of butterflies involving node i since each such butterfly has two edges involving i. In
expectation,

ni
.= ρ4(n̂u − 1)

(
n̂v

2

)
, (5.8)

because there are (n̂u − 1) other choices for the second node in Û and
(n̂v

2

)
choices for the two nodes in

V̂ . Finally, ρ4 is the probability that all four edges exist. Combining (5.7) and (5.8) gives

ĉu .= ρ4n̂v(n̂u − 1)(n̂v − 1)

d̂u(d̂u − 1)(d̂v − 1)
. (5.9)

Using analogous reasoning for ĉv, we ultimately want

ρ4 = ĉud̂u(d̂u − 1)(d̂v − 1)

n̂v(n̂u − 1)(n̂v − 1)
= ĉvd̂v(d̂u − 1)(d̂v − 1)

n̂u(n̂u − 1)(n̂v − 1)
. (5.10)

Ideally, we would have

n̂u = d̂v and n̂v = d̂u, (5.11)
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but we cannot generally satisfy (5.10) and (5.11) at the same time. Therefore, we choose one of the
equalities in (5.11) and then solve for the other number of nodes and connectivity using (5.10) to get

n̂u = d̂v ⇒ n̂v = ĉu

ĉv
d̂u, ρ = (d̂u − 1)(ĉv)2

ĉud̂u − ĉv
, (5.12)

n̂v = d̂u ⇒ n̂u = ĉv

ĉu
d̂v, ρ = (d̂v − 1)(ĉu)2

ĉvd̂v − ĉu
. (5.13)

So that we can have the possibility of using a complete bipartite subgraph to yield metamorphosis
coefficients of one, we constrain our choices to satisfy:

n̂u ≥ d̂v and n̂v ≥ d̂u. (5.14)

To satisfy (5.14), we choose (5.12) if ĉu

ĉv ≥ 1 and (5.13) otherwise. It is easy to see from (5.10) that
this has the added bonus of ensuring ρ ≤ 1. This logic forms the basis of building affinity blocks for
bipartite BTER.

5.3 Bipartite BTER algorithm

As explained in Section 5.2, the affinity block building process for bipartite BTER takes into account
both the desired vertex degrees and corresponding desired per-degree metamorphosis coefficients when
setting the partition sizes and connectivity of each affinity block. This information is then used to model
each affinity block as an ER subgraph, where the preponderance of the graph butterflies are created.
Accordingly, the affinity block construction is key to matching per-degree metamorphosis coefficients.
In order to match the desired degree distribution, the remaining excess degree (i.e., edges not used in
constructing the affinity blocks) is connected via a fast bipartite CL procedure. The full bipartite BTER
algorithm is listed in Algorithm 2.

5.4 Experimental results

We generate bipartite BTER graphs using the procedure described in Section 5.3. We first discuss a single
graph: CondMat. We show the resulting degree distribution and degreewise metamorphosis coefficients
in Fig. 6. The degree distributions, shown in Fig. 6a and b, show little difference between bipartite
BTER and CL; both are good matches to the original degree distribution. The degreewise metamorphosis
coefficients are shown in Fig. 6c and d. Although there is not a perfect match between bipartite BTER
and the original graph, it is much better than CL, which has almost no butterflies.

Summary data for all graphs is shown in Table 4. This is the same as Table 3 except that now we
have added a row for bipartite BTER. For the first four graphs, we are reporting average values over 100
experiments, and we also report the entire range of values; we do not do multiple trials for the larger graphs
because the postprocessing to count the butterflies is extremely expensive. The numbers of butterflies
and metamorphosis coefficients are significantly improved as compared to CL. We see that CondMat has
70,000 butterflies, bipartite CL produces less than 400 butterflies, but bipartite BTER produces 120,000
butterflies. The bipartite BTER number is a slight overestimate, but overall much better than CL.

For the first two graphs, where we see a large difference between the metamorphosis coefficients, we
consider the impact on the product graphs (A′A and AA′ where A is the adjacency matrix) in Fig. 7. We
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Algorithm 2 Bipartite BTER
1: procedure bibter({du

i }, {dv
j }, {cu

d}, {cv
d} )

We assume that degrees are sorted in increasing order
2: m←∑

i du
i

3: E ← ∅
4: {eu

i } ← {du
i }, {ev

j } ← {dv
j } � Excess degree initialization

5: i← min{i|du
i > 1}, j← min{j|dv

j > 1}
6: repeat � Create affinity blocks until nodes exhausted
7: d̂u ← du

i , d̂v ← dv
j

8: ĉu ← cd̂u , ĉv ← cd̂v

9: if ĉu/ĉv ≥ 1 then

10: n̂u ← d̂v, n̂v ← round
(

ĉu

ĉv d̂u
)

, ρ ←
(

(d̂u−1)(ĉv)2

ĉud̂u−ĉv

)1/4

11: else

12: n̂v ← d̂u, n̂u ← round
(

ĉv

ĉu d̂v
)

, ρ ←
(

(d̂v−1)(ĉu)2

ĉv d̂v−ĉu

)1/4

13: end if
14: if i + n̂u − 1 ≤ nu and j + n̂v − 1 ≤ nv then � Create ER subgraph
15: for î = i, i + 1, . . . , i + n̂u − 1 do
16: for ĵ = j, j + 1, . . . , j + n̂v − 1 do
17: r ← U(0, 1) � Uniform random value in [0, 1]
18: if r <= ρ then
19: E ← E ∪ (î, ĵ)
20: eu

î
= max{0, eu

î
− 1}, ev

ĵ
= max{0, ev

ĵ
− 1} � Update excess degree

21: end if
22: end for
23: end for
24: end if
25: i← i + n̂u, j← j + n̂v

26: until i > nu or j > nv

27: E ← E ∪ fbcl({eu
i }, {ev

j })
28: end procedure

expect that CL will produce too many nonzeros in the product graph because there will not be enough
overlap in the cliques. Indeed, CL predicts too many nonzeros, but BTER is much closer to the original.

The degreewise metamorphosis coefficients for the remaining graphs are shown in Figs 8 and 9.
Even in cases where bipartite CL’s overall numbers are close to the original graph as shown in Table 4,
the degreewise metamorphosis coefficients are essentially zero. Bipartite BTER corrects this problem
and gets metamorphosis coefficients that are much closer to what we see in the original graph. In some
cases like MovieLens (Fig. 8e), the CL metamorphosis coefficients are much higher than zero, which
is the result of the overall high density of the graph. Indeed, it has been proven (see Lemma 1 in [43])
that under mild assumptions, any bipartite graph with m edges and partition sizes nu and nv contains at
least on the order of ( nu

nv )2 · ( m
nu+nv )

4 many butterflies. Thus, the presence of a certain minimum number
butterflies in bipartite graphs of sufficient density is inevitable; nevertheless, the original graph still has
higher values that are matched better by bipartite BTER. MovieLens also has an unusual profile in Mode 2
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(a) (b)

(c) (d)

Fig. 6. Degree distribution and degreewise metamorphosis coefficients on the original CondMat graph as well as the models
generated by CL and bipartite BTER.

(see Fig. 8f), which is really just an artefact of the data collection. Nevertheless, bipartite BTER is able
to obtain a reasonable approximation. For completeness, the degree distributions for bipartite CL and
BTER as compared to the original graphs are shown in Figs 10 and 11. There is little difference between
bipartite BTER and CL in terms of the degree distribution.

6. Conclusions

We have considered the problem of how to generate realistic bipartite graphs to reproduce the charac-
teristics of large real-world networks. Our first model, bipartite CL, accurately reproduces the degree
distribution. Our second model, bipartite BTER, goes further to capture the degreewise metamorphosis
coefficients. High coefficients are indicative of a relatively large number of butterflies indicating cohesion
or community structure, which is rare in sparse random graphs unless there are some behaviors that go
beyond just the degree structure. Creating realistic graph models leads to some hypotheses about the
ways the graphs were formed. In the cases where CL greatly underestimated the number of butterflies
(CondMat, IMDB and Peer2Peer), we can surmise that there is some significant community-like behav-
ior. This is easy to see for authorship of papers (CondMat) and actors appearing in movies (IMBD).
For the Peer2Peer network, we might hypothesize that some tight-knit peer groups are sharing many
files between themselves. The other graphs have a smaller difference between the number of butterflies
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Table 4 Metamorphosis coefficients for original, bipartite CL, and bipartite BTER graphs

Graph Size Edges Cats. Buts. Meta.

nu nv m n n c

CondMat-Orig 1.67e4 2.20e4 5.86e4 1.24e6 7.05e4 2.28e−1
CondMat-CL 1.67e4 2.20e4 5.86e4 2.22e6 3.57e2 6.43e−4
CondMat-BTER 1.67e4 2.20e4 6.00e4 2.36e6 1.10e5 1.86e−1
BTER 100 trial range [1.67–1.67] [2.20–2.20] [6.00–6.01] [2.31–2.42] [1.01–1.16] [1.73–1.99]

IMDB-Orig 1.28e5 3.84e5 1.47e6 8.56e8 3.50e6 1.64e−2
IMDB-CL 1.28e5 3.84e5 1.47e6 1.11e9 1.41e5 5.10e−4
IMDB-BTER 1.28e5 3.84e5 1.47e6 1.35e9 6.77e6 2.00e−2
BTER 100 trial range [1.28–1.28] [3.84–3.84] [1.47–1.47] [1.35–1.36] [6.62–6.91] [1.95–2.04]

Flickr-Orig 1.73e6 1.04e5 8.55e6 2.57e12 3.53e10 5.49e−2
Flickr-CL 1.73e6 1.04e5 8.39e6 2.20e12 1.52e10 2.78e−2
Flickr-BTER 3.96e5 1.04e5 8.34e6 2.36e12 4.25e10 7.21e−2
BTER 100 trial range [3.96–3.96] [1.04–1.04] [8.34–8.34] [2.35–2.37] [4.23–4.27] [7.19–7.23]

MovieLens-Orig 6.51e4 7.16e4 1.00e7 2.46e13 1.20e12 1.95e−1
MovieLens-CL 6.51e4 7.16e4 8.78e6 1.37e13 5.34e11 1.56e−1
MovieLens-BTER 1.07e4 6.99e4 8.52e6 1.23e13 1.08e12 3.51e−1
BTER 100 trial range [1.07–1.07] [6.99–6.99] [8.51–8.52] [1.23–1.23] [1.07–1.08] [3.50–3.51]

MillionSong-Orig 1.02e6 3.85e5 4.84e7 2.21e13 2.15e11 3.89e−2
MillionSong-CL 1.02e6 3.85e5 4.81e7 2.59e13 6.74e10 1.04e−2
MillionSong-BTER 1.02e6 3.85e5 4.80e7 2.93e13 1.90e11 2.59e−2

Peer2Peer-Orig 1.99e6 5.38e6 5.58e7 8.18e11 3.80e9 1.86e−2
Peer2Peer-CL 1.99e6 5.38e6 5.58e7 1.20e12 1.14e8 3.79e−4
Peer2Peer-BTER 1.99e6 5.38e6 5.60e7 1.66e12 6.71e9 1.61e−2

LiveJournal-Orig 5.28e6 7.49e6 1.12e8 3.36e14 3.30e12 3.92e−2
LiveJournal-CL 5.28e6 7.49e6 1.11e8 3.31e14 2.04e12 2.47e−2
LiveJournal-BTER 3.20e6 7.49e6 1.10e8 3.50e14 4.61e12 5.26e−2

produced by CL and the real-world graph, indicating that there is much less community structure. In fact,
some graphs are so dense that CL has a nonzero metamorphosis coefficient, especially MovieLens.

Although these models match real-world observations in some aspects, more study is needed to
understand their limitations. How well do these models reproduce other metrics such as graph diameter,
singular values of the adjacency matrix, centrality measures, joint degree distributions, assortativity,
subgraph census, and so on? Can we find evidence that affinity blocks exist in real-world graphs? We
have created non-overlapping blocks; is that realistic? We have not mentioned time evolution, but certainly
all networks are evolving in time and we need models that capture such changes. We stress that bipartite
BTER is not geared towards creating a hierarchy of communities for bipartite graphs as described in [9],
but it could potentially be modified to do so by grouping the affinity blocks. These are but a few topics
for future investigation.
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Fig. 7. Comparison of number of nonzeros in product graphs AA′ and A′A from CL and BTER as compared to from the original.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Degreewise metamorphosis coefficient of the original graph (circles), fast bipartite CL (diamonds), and bipartite BTER
(squares).
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Degreewise metamorphosis coefficient of the original graph (circles), fast bipartite CL (diamonds), and bipartite BTER
(squares).
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Degree distributions illustrating the original (circles), fast bipartite CL (diamonds), and bipartite BTER (squares). The data
is log-binned.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Degree distributions illustrating the original (circles), fast bipartite CL (diamonds), and bipartite BTER (squares). The data
is log-binned.
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