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The school choice problem (SCP) looks at assignment mechanisms matching
students in a public school district to seats in district schools. The Gale–Shapley
deferred acceptance mechanism applied to the SCP, known as the student optimal
stable matching (SOSM), is the most efficient among stable mechanisms yielding
a solution to the SCP. A more recent mechanism, the efficiency adjusted deferred
acceptance mechanism (EADAM), aims to address the well-documented tension
between efficiency and stability illustrated by SOSM. We introduce two alternative
efficiency adjustments to SOSM, both of which necessarily sacrifice stability. Our
discussion focuses on the mathematical novelty of new efficiency modifications
rather than any practical superiority of implementation or outcome. That is, our
contribution lies in process rather than outcome. Yet we argue that the demonstra-
tion of multiple processes yielding common outcomes is, in itself, a measure of
the quality of that outcome. More specifically the consistency of outcome from
different processes strengthens the argument that Pareto dominations of SOSM
can be supported as “fair” despite the resulting priority violations.

1. Introduction

Since the mid-eighties, in cities across the United States, public school assignment
policies have shifted towards providing students the opportunity to influence their
school assignment. The main objective of these school choice policies is to allow
all students to attend more desirable schools. A standard theoretical framework for
studying such policies is two-sided matching (see [Gale 2001; Roth and Sotomayor
1990]). Presented in this context, the practical goal of the school choice problem
(SCP) is to devise a matching mechanism (designed by or for the school district) that
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allocates available resources (seats in schools) among players (students or parents)
subject to district priorities and legal requirements. Mathematically, it is interesting
to consider ways in which the mechanisms might be modified that, while arguably
consistent with the societal objectives of the SCP, present novel approaches to the
underlying process.

In the economics literature, the SCP is viewed as a standard prototype for
priority-based allocation problems (see [Kesten 2006]) and many of the school
choice mechanisms in use or under investigation tolerate a large number of students
receiving low preference schools (inefficiency) in order to respect school priority
structures (stability). The ultimate purpose of these priorities is to benefit the
students, but in many practical situations they are also the direct cause of efficiency
losses, thus resulting in students receiving less desirable assignments than might
have been possible. This suggests that taking a stable solution as a starting point
and then making improvements for efficiency may be a reasonable compromise
resulting in more desirable matchings.1 Our discussion here will focus on the
mathematical nuances of different efficiency modifications rather than any practical
superiority of implementation or outcome. We will also suggest that stability loss
may be justified to key stakeholders by arguing that the mathematical modifications
are unbiased and incorporated as part of the overall process, and thus they do not
constitute a “breach of contract”.

Throughout, we employ the language and methods of mechanism design as
applied to the SCP following in the footsteps of, for example, [Abdulkadiroǧlu
and Sönmez 2003]. In this context the designer/principal is the school district
(or whoever is choosing the mechanism to be used), students are the players, and
schools are merely items to be consumed.

The Gale–Shapley deferred acceptance mechanism applied to the SCP, known
as the student optimal stable matching (SOSM), is the most efficient among stable
mechanisms yielding a solution to the SCP [loc. cit.]. In this article we examine
two concrete processes that modify the outcome of SOSM and improve efficiency
at the cost of stability. Our goal is to situate in a common framework a range of
ideas introduced recently by several different authors, so that the mathematical
connections between different outcomes and processes are more visible. More
specifically, we focus here on using multiple cooperation/collaboration methods
to obtain Pareto improvements of SOSM. We are interested in the process as well
as the outcome and, in particular, we argue that examining multiple pathways
strengthens the case for those outcomes both in theory and in practice.

1A relevant quote from [Abdulkadiroǧlu et al. 2009]: “Pareto efficiency for the students is the
primary welfare goal, but [: : : ] stability of the matching, and strategyproofness in the elicitation of
student preferences, are incentive constraints that likely have to be met for the system to produce
substantial welfare gains over the [current] system.”
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We begin in Section 1B by introducing two standard mechanisms used in this area
of investigation: SOSM and its close neighbor, the efficiency adjusted deferred ac-
ceptance mechanism (EADAM), a more recently introduced mechanism which aims
to address the well-documented tension between efficiency and stability illustrated
by SOSM. In Section 2 we introduce the first of our approaches by studying the use
of “coalitions” in order to modify SOSM school assignments. This section closely
follows [Huang 2006], where it is shown that while the Gale–Shapley deferred
acceptance algorithm (DA) disincentivizes strategic action by individuals, it is still
feasible for groups to beat the system by coming together and strategizing. We adapt
Huang’s methods to the SCP and describe a process which we call the coalition
improvement procedure in Section 2A. Using coalitions in the SCP allows us to
approach efficiency modifications to SOSM in a new way and offers an alternative
argument in support of previously known matching mechanisms. For example, this
approach can result in the EADAM outcome along with other Pareto improvements
of SOSM. We focus on properties of coalition improvements and comparisons to
EADAM in Section 2B.

Following up on the coalition/cooperation theme, in Section 3 we introduce
a second and related approach which focuses on groups of students who form
trading cycles (“cliques”) to improve their own assignments.2 We examine the
impact of these cliques as applied to the SOSM outcome. Once again, our approach
deploys mathematical tools in a new context to produce several Pareto improvements
on SOSM. We take the opportunity to show that the coalition improvements of
Section 2 can also be integrated into this new framework, which proves to be a
powerful construct to study cycle improvements of various kinds from a common
point of view.

1A. Notation and basic terms used. Let I denote a nonempty set of students, and
S a nonempty set of schools. A matching M W I ! S [ fnullg is a function that
associates every student i 2 I with exactly one school M.i/, or potentially no
school at all, in which case M.i/ D null. Write M for the set of matchings. We
will also occasionally want to talk about school quotas, which we will encode in
a function q W S ! N; in other words, for s 2 S , q.s/ is the number of seats to be
filled at school s.

A preference profile Pi for student i 2 I is a tuple .S1; : : : ; Sn/ where the Sj

form a partition of S and every element of Sj is preferred to every element of Sk

if and only if j < k.3 Define the ranking function 'i W S ! N of a student i 2 I

2The term clique has a specific meaning in graph theory, unrelated to our work here.
3We will assume that student preference lists are complete, so it makes sense to define a preference

list as a partition of the set of all schools. This is not always realistic however. Some students may
wish to submit truncated lists, and this may or may not be allowed by school district policies. In fact,
complete preference profiles in this context are rare. Often families are only permitted to list 3 to 7



804 AKSOY, AZZAM, COPPERSMITH, GLASS, KARAALI, ZHAO AND ZHU

by letting 'i.s/ denote i’s ranking of s 2 S . In other words, 'i.s/ D j if s 2 Sj .
If i prefers sk to sl , we write sk �i sl , or simply sk � sl if i is unambiguous. Note
that the notation � denotes a strict preference order; if we want to describe a weak
order, we will write ⌫. We denote a set consisting of preference profiles for each
student in I by P D fPi W i 2 Ig, and the space of all such sets is denoted by P.

A priority structure …s for school s 2 S is a tuple .I1; : : : ; In/ where the Ij

form a partition of I and every element of Ij is preferred to every element of Ik

if and only if j < k. If s prefers ik to il , we write ik �s il , or simply ik � il if s

is unambiguous. Once again, the notation � denotes a strict preference order; if
we want to describe a weak order, we will write ⌫. We denote a set consisting of
priority structures for each school in S by … D f…s W s 2 Sg, and the space of all
such complete sets is denoted by

U

.
A matching M 0 (Pareto) dominates M if M 0.i/ ⌫i M.i/ for all i and M 0.j / �j

M.j / is strict for some j . A (Pareto) efficient matching is a matching that is not
(Pareto) dominated.

A matching mechanism M W P⇥ U! M is a function that takes an ordered pair
.P ; …/ of preferences and priorities and produces a matching.

Let …s be a priority structure for school s. A matching M violates the priority
of i 2 I for s if there exist some j 2 I and s0 2 S such that

(1) M.j / D s, M.i/ D s0: j gets assigned s under M and i gets assigned s0

under M ,

(2) s �i s0: i prefers attending s over s0, and

(3) i �s j : s prioritizes i over j .

We say that a matching M is stable if

(1) M does not violate any priorities,

(2) no student is matched to a lower-ranked school when a more preferred school
is unfilled, or more precisely, if M.i/ D s, then for any school s0 2 S with
s0 �i s, #fj 2 I j M.j / D s0g D q.s0/,

(3) no student remains unmatched when a school is unfilled; that is, if M.i/ D null,
then for any school s 2 S , #fj 2 I j M.j / D sg D q.s/.4

A stable mechanism is one that always produces stable matchings.

schools, choosing among many more. Then the district “completes” the student’s profile, by first
adding any school in her walk zone (if not already listed), and then “padding” the list with the schools
that remain unlisted added to the end of the preference list, strictly below any listed by the student
herself. Here we shall assume that when incomplete lists are allowed or unavoidable, the student
preference lists are padded in this manner; our results will then work without modification.

4We assume that all students prefer being placed anywhere to being unassigned.
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1B. Background. In this section we describe two well-studied mechanisms in the
SCP: the student optimal stable matching (SOSM) and the efficiency adjusted
deferred acceptance mechanism (EADAM). All mechanisms presented in this
section use strict preference lists for students.

The first of these, SOSM, is based on the Gale–Shapley deferred acceptance algo-
rithm (DA) [1962]. See [Roth and Sotomayor 1990] for an extensive review of the
various applications of the DA algorithm and [Roth 2008] for a more recent historical
overview. Gale and Shapley first described their method in the context of the stable-
marriage problem (see [Knuth 1997]) and proposed applying it to the college ad-
missions problem, a problem that in some ways resembles the SCP. Abdulkadiroǧlu
and Sönmez [2003] adapted the DA algorithm to the SCP and called it the student
optimal stable mechanism (SOSM). Below is a brief description of this procedure.

Student optimal stable mechanism:

Round 1: Each student applies first to his or her first choice school. Each school
then tentatively accepts the student(s) highest on its preference list among those who
applied that round (such students are now waitlisted) and rejects the rest beyond
its quota. We remove each waitlisted student from the market. All unwaitlisted
students move on to the next round.

And in general:

Round k, k � 1: Each unassigned student applies to his or her next choice school.
Each school considers the new applicants together with the current waitlist and
repopulates the waitlist with those applicants who are highest on its priority list
and rejects the rest beyond its quota. We remove each waitlisted student from the
market. All unwaitlisted students move on to the next round. The algorithm runs
until all students have been assigned.

SOSM performs well when evaluated for Pareto efficiency5, stability, and strate-
gyproofness and is viewed as a practical mechanism for implementation. In fact,

5We should qualify this assertion about the efficiency performance of SOSM. In the school choice
problem as in many other matching markets, the preference and priority classes often are not singleton
sets [Irving 1994; Manlove 2002]. In other words, there are many students in the same priority level
for a given school, and it is conceivable that a student may wish to classify two or more schools in the
same level of preference. The way SOSM and similar mechanisms deal with ties in such scenarios
(often randomly and only on the school side, assuming students will submit strict preferences) creates
arbitrary rankings, introduces artificial conditions, and results in a sizable efficiency loss (see [Erdil
and Ergin 2008] for a study of tie-breaking in the school choice context and its efficiency cost). More
generally it is known that many desirable properties of stable matching mechanisms are automatic
only in the strict-preferences and strict-priorities scenario; once we allow indifferences, the problem
often gets much more complicated [Manlove et al. 2002] and one might need to devise new goals and
new extensions of the notion of stability (see [Chen 2012; Irving 1994]). We will say a bit more about
indifferences in the final section of this paper.
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several large districts such as New York City and Boston [Abdulkadiroǧlu et al.
2009; 2006; 2005a; 2005b] have adopted SOSM as their mechanism of choice.
As we have mentioned, SOSM offers a stable strategyproof mechanism whose
outcomes Pareto dominate all other stable matchings.6

As motivation for investigating efficiency adjustments to the SOSM outcome
and for introducing a powerful and well-respected model mechanism (EADAM),
we give an example, due to Roth, that illustrates the problem of efficiency versus
stability in SOSM (see [Abdulkadiroǧlu et al. 2009; Kesten 2010]). This example
also suggests that one could consider alternative processes that maintain appropriate
respect for the (players’) input while allowing for viable algorithmic alternatives.

Assume there are three schools, s1; s2; s3 and three students i1; i2; i3. The
priorities of the schools and the preferences of the students are given by

i1 W s2 � s1 � s3; s1W i1 � i3 � i2;

SCP1 W i2 W s1 � s2 � s3; s2W i2 � i1 � i3;

i3 W s1 � s2 � s3; s3W i2 � i1 � i3;

where a � b stands for “a is preferable to b”. Here, the only stable matching is

M SCP1

S D
✓

i1 i2 i3
s1 s2 s3

◆
;

but this matching is (Pareto) dominated by

M SCP1

E D
✓

i1 i2 i3
s2 s1 s3

◆
:

We see that M SCP1

E (Pareto) dominates M SCP1

S because it assigns i1 and i2 schools
they prefer over their M SCP1

S assignment. Furthermore, M SCP1

E is (Pareto) efficient.
However, the matching is no longer stable because i2 is in the position of violating
i3’s priority for s1.

In part to address the weakness illustrated by the example above, Kesten [2010]
proposed a new mechanism, and called it the efficiency adjusted deferred acceptance
mechanism (EADAM). In order to understand EADAM, we must first define an
interrupter. Let student i be one who is tentatively placed in a school s at some
step t while running the SOSM, and rejected from it at some later step t 0. If there

6Note that a stable mechanism can never really be strategyproof in the complete sense. More
specifically, no stable matching mechanism exists for which stating the true preferences is always
a best response for every agent where all other agents state their true preferences (see for instance
[Roth and Sotomayor 1990, Corollary 4.5]). However the DA/SOSM is practically strategyproof
as we only view the students as strategic players and the student optimality implies that there is no
incentive for the students to misrepresent their preferences (see [Roth 1982]). This perspective does
not take into account manipulation by schools in capacity (see [Sönmez 1997]) or preferences, see
[Ehlers 2010] for recent work addressing these issues.
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exists at least one other student who is rejected from school s after step t � 1 and
before step t 0, then we call student i an interrupter for school s and the pair .i; s/

is an interrupting pair of step t 0. An interrupter is consenting if she allows the
mechanism to violate her priorities at no expense to her, that is, if she allows the
mechanism to drop her from the running for schools she was an interruptor for,
thus ignoring her priority standing with such schools. Note that the student’s actual
assignment would remain the same if not improve, and the consent would cost her
nothing; by definition, she would not have been assigned to any school for which
she was an interrupter in the first place.

EADAM then runs as follows:

Efficiency adjusted deferred acceptance mechanism:

Round 0: Run SOSM.

Round 1: Find the last step (of SOSM run in Round 0) at which a consenting
interrupter is rejected from the school for which he/she is an interrupter. Identify
all interrupting pairs in that step which contain a consenting interrupter. If there
are no such pairs, then stop. Otherwise for each identified interrupting pair .i; s/,
remove school s from the preference list of student i without changing the relative
order of the remaining schools. Rerun SOSM with the new preference profile for
all such i until all students have been assigned.

And in general:

Round k, k � 1: Find the last step (of SOSM run in the previous round) at which a
consenting interrupter is rejected from the school for which he/she is an interrupter.
Identify all interrupting pairs in that step which contain a consenting interrupter.
If there is no such pair, stop. Otherwise for each identified interrupting pair .i; s/,
remove school s from the preference list of student i without changing the relative
order of the remaining schools. Rerun SOSM with the new preference profile until
all students have been assigned.

In SCP1, .i3; s1/ is an interrupting pair and EADAM with the consent of i3
outputs the Pareto efficient matching M SCP1

E . Note that this result improves the
assignments for i1 and i2 while leaving i3 with the same assignment. This mecha-
nism deploys a balanced approach to priorities and preferences and points towards
the possibility of introducing alternative pathways to these outcomes, which leads
us to our next section where we do just that.

2. Coalitions in the school choice problem

Huang [2006] discusses a weakness of the Gale–Shapley algorithm in the context
of the stable marriage problem and introduces the idea of coalition cheating in the
marriage problem. More specifically he shows that a coalition can be formed where
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some men, without forgoing their own Gale–Shapley stable matching assignment,
can cheat (misrepresent their preferences) so that some other men marry women
who are higher on their preference list.

In this section we apply these ideas to the school choice problem. In this way we
develop an alternative process for improving on the SOSM outcome. In Section 2A
we give some background and an example that will motivate Huang’s construction.
We then introduce the elements of what Huang calls cheating coalitions in the
context of the SCP, and discuss some implementation issues. From here onward,
we resist the use of the term “cheating” in this context because we believe that these
coalitions could be systematically incorporated into the design of a mechanism since
they improve outcomes for some with no adverse effects on others. If the goal is for
a “benevolent” district mechanism, then improving efficiency beyond that of a stable
matching (e.g., SOSM), might simply be a part of the process. In Section 2B we com-
pare the possible outcomes of coalitions to that of EADAM. Our presentation and
general approach here are consistent with our focus on process as the primary area
of interest while maintaining loyalty to the practical needs of the SCP framework.

2A. Huang’s construction, coalitions and school choice. The following theorem
establishes that in the stable marriage problem, there exists no coalition of men that
may falsify their preferences such that every member of the coalition receives a
strictly better assignment:

Theorem 2.1 [Dubins and Freedman 1981]. In the Gale–Shapley men-optimal algo-
rithm, no subset of men can improve their assignment by falsifying their preference
lists.

Translating the stable marriage problem to the context of the SCP, as done in
[Abdulkadiroǧlu and Sönmez 2003] by replacing men with s students, we get as an
immediate corollary:

Corollary 2.2. In the SOSM algorithm, no subset of students can improve their
assignment by falsifying their preference lists.7

In light of results of this nature, Huang [2006] introduces a nuanced notion of
coalitions that falsify preferences to improve assignments. In the following, we
carry over to the SCP setting this coalition model, which distinguishes between two
main groups of players: those who falsify their preferences, and those who benefit
from the falsifications.

Let I and S be the set of students and schools respectively in a given SCP. Let M

be the SOSM stable matching assignment for the case where all students submit their
true preferences. A coalition C is defined in terms of a pair .K; A/ of subsets of the

7One can nonetheless prove that SOSM (DA as applied to school choice) is not group-strategyproof.
We choose not to go further into strategy discussions here.
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set I of students. The first subset, the cabal K D .i1; i2; : : : ; ijK j/ of a coalition C ,
is a list of students such that each student ik , 1  k  jKj, prefers M.ikC1/ to
M.ik/, indices taken modulo jKj. In other words, we have M.ikC1/ �ik

M.ik/

for 1  k  jKj, and a cabal loop, written .i1 ! i2 ! � � � ! ijK j ! i1/, a closed
chain of students each of whom would prefer the stable assignment of the person
following him to his own stable assignment. The second subset, the accomplice set
A D A.K/ of cabal K D .i1; i2; : : : ; ijK j/, is a set of students A.K/ ⇢ I such that
i 2 A.K/ if for some ik 2 K, we have M.ikC1/ �i M.i/ and i �M.ikC1/ ik . In
other words, an accomplice is a student who in his truthful preference list ranks
the stable assignment of someone in the cabal (ikC1) higher than his own stable
assignment, while he himself is ranked higher by that school than another member
of the cabal (the one pointing toward ikC1) who would prefer it to his own school.
Note that K and A.K/ may or may not be disjoint.

For any student i 2 I , we can write the preference profile of i as a disjoint union
of three sets: .PLŒi ç; M.i/; PR Œi ç/. Here the set PLŒi ç (respectively PR Œi ç) is simply
the list of schools on i ’s preference profile to the left (respectively to the right) of his
stable assignment M.i/. Let ⇡r denote a random permutation of S . We can now
prove the following (as an easy adaptation from the analogous result of Huang):

Theorem 2.3 (cf. [Huang 2006]). Let M be the SOSM matching for a given SCP
when students submit their true preferences. Consider a coalition C D .K; A.K//,
and suppose that each accomplice i 2 A.K/ submits a falsified list of the form
.⇡r .PLŒi ç � X /; M.i/; ⇡r .PR Œi ç [ X //, where

✏ if i 62 K, then X D fs 2 M.K/ j s D M.ik/; s �i M.i/; i �s ik�1g, and

✏ if i D ik 2 A.K/ \ K, then

X D fs 2 M.K/ j s D M.ij /; j ¤ k; s �ik
M.ik/; ik �s ij�1g:

Then in the resulting matching M 0, M 0.ik/ D M.ikC1/ for ik 2 K and M 0.i/ D
M.i/ for i 62 K.

We observe that accomplices modify their preference profiles by moving schools
on the left of their stable assignment to the right of their stable assignment if they
are desirable to other students in the cabal. In particular, if i is an accomplice, then
the set X of schools i moves to the right of his stable assignment will consist of
all the stable assignments of the members of the cabal that rank i higher than the
student following their stable assignment in the cabal loop. Note that the falsified
preference lists incorporate a random permutation ⇡r of the preferences to the
left and the right of the stable partner. The coalition procedure is quite robust, in
that such a random permutation will not affect the outcome. In other words, the
resulting matching creates a cyclical reassignment of those within the cabal loop
while leaving all other assignments as they were.
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We call each outcome of the improvement process described in Theorem 2.3
a coalition improvement and formalize the concept in the coalition improvement
procedure (CIP).

Coalition improvement procedure for a given sequence of coalitions .C1;: : :;Ck/8:

Round 0: Given a preference and priority profile, run the SOSM algorithm and
obtain a temporary matching M0.

Round t , 1  t  k: Given Mt�1, apply Theorem 2.3 with the coalition Ct D
.Kt ; A.Kt //. Return the resulting matching M 0

t�1 as the outcome Mt .

Let us now consider an example, which we will label SCP2. This example
demonstrates what CIP might look like in practice and also points out which set
of consenting interruptors would result in EADAM having the same outcome. Let
I D fi1; i2; i3; i4; i5g and S D fs1; s2; s3; s4; s5g be the sets of students and schools,
respectively, and let their respective preference and priority profiles be given as
follows:

i1 W s2 � s5 � s4 � s3 � s1; s1W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2W i4 � i5 � i1 � i2 � i3;

SCP2 W i3 W s5 � s2 � s1 � s3 � s4; s3W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5W i1 � i2 � i5 � i3 � i4:

Note that the matching output by SOSM for SCP2 is

M SCP2

S D
✓

i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

◆
:

We now consider the following coalition C D .K; A.K//: Let K D fi1; i2; i4g
with the cabal loop .i1 ! i4 ! i2 ! i1/. The accomplice set A.K/ is fi5g and the
set X for i5 is fs2; s4g. In other words, the only student who modifies his preference
profile is i5. We display his old and new profiles:

i5’s old profile W s5 � s4 � s2 � s3 � s1;

i5’s new profile W s5 � s3 � s1 � s2 � s4:

(We underlined i5’s stable assignment s3.) The outcome matching when we rerun
SOSM is

M SCP2

C D
✓

i1 i2 i3 i4 i5
s2 s5 s1 s4 s3

◆
;

8It should be apparent that there may be multiple outcomes of CIP for a given SCP depending on
the particular sequence of coalitions we input. For simplicity we will assume that the cabals in each
of the Ci are disjoint.
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which improves the outcome for all members of the cabal and does not affect the
remaining students. We note that this is also the EADAM outcome if i5 consents.
We will discuss this example further in Section 3A.

2B. Coalitions and EADAM. SOSM’s strict adherence to stability and the result-
ing inefficiency has already been mentioned here (and documented in [Abdulka-
diroǧlu et al. 2009; Kesten 2010] and elsewhere). In this section we compare
CIP (described in Section 2A) and EADAM from [Kesten 2010] (described in
Section 1B), both of which model efficiency adjustments to SOSM. Specifically,
we show that the common outcome of CIP and EADAM demonstrated by SCP2

holds more generally by proving that for any SCP, there exists a coalition so that
CIP yields the EADAM outcome with full consent. This fact may justify “fairness”
arguments despite the sacrifice of stability.

Here is our general statement:
Theorem 2.4. For any possible combination of consenters, the associated EADAM
outcome may be obtained by forming an appropriately designed coalition and
running CIP.

The intuition behind this is that accomplices can be viewed as interrupters who
consent to waive their priority so that they do not start a rejection chain. But
coalitions reframe the argument so that the players are given the power to improve
the outcome of the mechanism rather than being asked to waive their priority as
with consenters.
Proof of Theorem 2.4. Let I and S be the sets of students and schools, respectively.
Let .P ; …/ be a given school choice problem for the pair .I; S/, and let W be
the set of students who consent to waiving their priorities under EADAM. Denote
by MS and ME the SOSM and the EADAM outcome matchings of this problem,
respectively. We will now construct a coalition C which will result in the same
outcome ME . First define the cabal set K to be the set of all students whose
assignments are different under MS and ME :

K D fi 2 I j MS .i/ ¤ ME.i/g:
These are the students who benefit from EADAM; they will also be the students who
will benefit from the coalition C . Since every student whose assignment changes
under EADAM is in K, we can partition K into cabal loops. This is equivalent to
the basic algebraic fact that any finite permutation can be written as the product of
disjoint cycles. Hence an elementary algorithm to decompose K into its individual
cabal loops can be described as follows:

Step 0: Define a permutation ⇡K of K by setting ⇡K .i 0/ D i (i 0 points to i) if
MS .i/ D ME.i 0/. In words, i 0 points to i if EADAM matches i 0 to the school to
which SOSM matches i .
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Step 1: Pick a student i 2 K and label her i1;1. Then let i1;2 be the student ⇡K .i1;1/

and more generally label i1;jC1 D ⇡K .i1;j /. This process will stop at some j1 with
⇡K .i1;j1

/ D i1;1, as ⇡K is a finite permutation. Then

K1 D .i1;1 ! i1;2 ! � � � ! i1;j1
! i1;1/

is a cabal loop.

And in general:

Step k, k � 1: Pick a student i 2 K who has not yet been assigned to a cabal loop
and label her ik;1. If none exists then the algorithm stops. Otherwise, label ⇡K .ik;1/

as ik;2 and more generally label ik;jC1 D ⇡K .ik;j /. This process stops at some jk

with ⇡K .ik;jk
/D ik;1 as ⇡K is finite. Then Kk D .ik;1 ! ik;2 ! � � �! ik;jk

! ik;1/

is a cabal loop.
Note that the algorithm has to stop because K is finite. Furthermore each student

in K shows up in exactly one round and hence in exactly one cabal loop, because ⇡K

is invertible.
Next we describe how to form the accomplice set A.K/. A student i will be in

A.K/ if and only if the following two conditions are both satisfied:

✏ i 2 W , or equivalently, i consents to waive her priorities in EADAM.
✏ There is a school s such that .i; s/ is a last interrupter pair at some round of

EADAM.

The new preference profile for an accomplice i 2 A.K/ will be of the form

.PLŒi ç � X ; MS .i/; PR Œi ç [ X /;

where

✏ if i 62 K, then X D fs 2 MS .K/ j s D MS .ik/; s �i MS .i/; i �s ikC1g, and
✏ if i D ik 2 A.K/ \ K, then

X D fs 2 MS .K/ j s D MS .ij /; j ¤ k; s �ik
MS .ik/; ik �s ijC1g:

Here we are using the notation of Section 2A where PLŒi ç (respectively PR Œi ç) is
the list of schools on i’s preference profile to the left (respectively to the right) of
his stable assignment MS .i/.

Finally Theorem 2.3 allows us to conclude that the outcome matching MC

of C D .K; A.K// will be as follows: MC .i/ D MS .i/ for all i 62 K, and
MC .ik/DMS .ikC1/ for ik ; ikC1 in some cabal loop Kj in K. But then MC DME

and we are done. ⇤
It is interesting to observe that CIP can produce outcomes that cannot be obtained

via EADAM no matter which students consent. That is, the converse of Theorem 2.4
is not true. To see this we analyze a minor modification of SCP2 which we
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label SCP3. Let I D fi1; i2; i3; i4; i5g and S D fs1; s2; s3; s4; s5g be given with the
following preference and priority structures, respectively:

i1 W s1 � s2 � s5 � s4 � s3; s1 W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2 W i4 � i5 � i1 � i2 � i3;

SCP3 W i3 W s5 � s2 � s1 � s3 � s4; s3 W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4 W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5 W i1 � i2 � i5 � i3 � i4:

The SOSM outcome is

M SCP3

S D
✓

i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

◆
:

EADAM with full consent (in fact we only need i5’s consent) returns the matching

M SCP3

E D
✓

i1 i2 i3 i4 i5
s1 s2 s5 s4 s3

◆
:

This corresponds to a coalition with the cabal set fi1; i2; i3; i4g and the singleton
accomplice set fi5g. The set X for i5 will be X D fs2; s4; s5g. Note that there
are two cabal loops: .i1 ! i3 ! i1/ and .i2 ! i4 ! i2/. There are indeed other
coalitions that could be used for the same SCP. Take, for instance, the cabal to be
fi2; i4g and let fi5g be the singleton accomplice set. Then X D fs2; s4g and we get

M SCP3

C D
✓

i1 i2 i3 i4 i5
s5 s2 s1 s4 s3

◆
:

This outcome cannot be obtained via EADAM because once i5 consents to waive
his priorities, he has to consent fully, and all Pareto improvements involving the
interrupter pairs he was a part of will also be made.

3. Cliques for school choice

EADAM and CIP provide us with ways to systematically improve upon SOSM
matching. Both involve complicated procedures requiring the identification of
problematic preference profiles (of interruptors or possible coalition members)
and subsequent modification of preference profiles and/or priority violations. The
ultimate goal in either case is the same: to Pareto improve upon SOSM in a way
that justifies the resulting priority violation(s). In this section we propose another
way to improve efficiency starting from the SOSM outcome. There are, again
necessarily, priority violations in the final matching. The main idea is as follows:
We begin by applying SOSM to the given SCP. Next, with no further consideration
of priorities, we enter students into a trading market designed purely to improve
school assignments from the point of view of student preferences.
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In Section 3A, we describe in more detail our new theoretical approach, the
trading adjusted deferred acceptance procedure (TADAP). While doing so, we
explicitly associate a directed graph to a given matching to provide a visual tool
to describe possible efficiency improvements. We investigate basic properties
of TADAP and compare outcomes of TADAP with those of other methods in
Section 3B. In particular, in keeping with our focus on process and the relationship
between outcomes, we discuss how coalitions and cliques relate to one another
and to other mechanisms involving cycle improvements. We also comment on
implications for the school choice context.

3A. The trading adjusted deferred acceptance procedure. We now develop a sys-
tematic way to find all Pareto improvements upon a predetermined matching M in
a given SCP. We will of course be particularly interested in the case where M is
the outcome of SOSM.

We start by associating a directed weighted graph .V; E; w/ to M as follows:
Each student i is assigned a unique vertex vi in V . There is an edge from vertex vi

to vertex vj if student i desires student j ’s assignment under the given matching at
least as much as, if not more than, the school to which he himself was assigned.
An edge e from vertex vi to vertex vj has weight w.e/ D 0 if student i desires
student j ’s assignment under the given matching as much as, but not more than, the
school to which he himself was assigned, and w.e/ D 1 if the preference is strict.

In the above we can identify V with the set of students. With this in mind we
now introduce the following:

Definition 3.1. Let I and S be a set of n students and a set of m schools, re-
spectively, with respective preference and priority structures .P ; …/. Let M

be a matching for the associated SCP. We say that the directed weighted graph
GM D .V; E; w/ is the (directed weighted) graph of the matching M if V D I ;
for any pair of students .i; j /, there is an edge eij from i to j if and only if
M.j / ⌫i M.i/; and for each edge eij 2 E, w.eij / D 0 if M.i/ ⌫i M.j /, and
w.eij / D 1 otherwise.

Using this terminology, we can make the following definition:

Definition 3.2 (cf. [Ergin 2002, Definition 1]). Let I , S , .P ; …/, M and GM be
given as in Definition 3.1 and let k 2 N. A clique of length k consists of a sequence
.i1; i2; : : : ; ik/ of k distinct students such that for each s < k, there is an edge in E

from vis to visC1
, there is an edge in E connecting vik

back to vi1
, and for some

s < k, we have w.eis ;isC1
/ D 1 or w.eik ;i1

/ D 1.9 A similar cycle where w D 0 on

9What we call a clique is occasionally called a trading cycle in some of the literature. We use the
former for brevity and also as a hint to the social context.



COALITIONS AND CLIQUES IN THE SCHOOL CHOICE PROBLEM 815

all edges is called a null clique. A matching whose graph contains no cliques (null
or otherwise) is acyclical.

A straightforward result then follows:

Theorem 3.3. If there exists a matching M (Pareto) dominating a matching M 0,
then the directed graph GM 0 of M 0 admits a clique. Equivalently, if the directed
graph of M 0 is acyclical, then M 0 is Pareto efficient. Conversely, if M 0 admits a
clique, we can always find a matching M which Pareto dominates M 0 (equivalently,
the directed graph of a Pareto efficient matching is acyclical).10

Consider now the following procedure:

Trading adjusted deferred acceptance procedure:

Round 0: Given a preference and priority profile, run the SOSM algorithm and
obtain a temporary matching M0.

Round t , t � 1: Given Mt�1, consider the graph .Vt ; Et ; wt / of Mt�1. If there
exists a student with no path through him, remove that student from the graph; his
assignment under Mt will remain his assignment at the beginning of this round. If
there are any cliques in the graph .Vt ; Et /, pick one (note that different choices
here may yield different results). For each edge from i to j in this clique, let Mt be
the matching that assigns student i the school to which j was matched under Mt�1.
If there is no clique, return Mt�1 as the outcome Mt and stop.

It is apparent from the description above that there may be multiple outcomes of
TADAP for a given SCP. In particular, in cases with multiple cliques, the procedure
may output different matchings depending on which cycles are selected at rounds
t � 1. Because following a clique yields a Pareto improvement, all outcomes
of TADAP in which a nonempty clique exists will Pareto dominate the SOSM
matching. In fact, any final outcome of TADAP will be Pareto efficient Pareto
dominations of the initial SOSM matching. A district might choose to select cliques
in an arbitrary manner and/or select cliques that include certain student populations
over others (reinforcing their original priority structure) in order to define a trading
adjusted deferred mechanism.

We begin with an example where the preference and priority structures are strict.
(In such a situation, the weight function on the graph is uniformly 1 and can be
ignored.) Consider once again SCP2 (Section 2A) with five students and five schools

10In this theorem and in the rest of this section, we do not consider the case when there are some
unassigned students and/or some unfilled places at a given school. If, on the other hand, this happens,
some students can improve their assignment by taking a more preferred free place at a school without
harming others. This means that a matching M may be Pareto dominated even in the case when the
directed graph of M is acyclic; see [Abraham et al. 2005], where a necessary and sufficient condition
for a matching to be Pareto optimal is proved.
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each with one seat:

i1 W s2 � s5 � s4 � s3 � s1; s1W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2W i4 � i5 � i1 � i2 � i3;

SCP2 W i3 W s5 � s2 � s1 � s3 � s4; s3W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5W i1 � i2 � i5 � i3 � i4:

The matching under SOSM is

M SCP2

S D
✓

i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

◆
:

SOSM does a poor job with student preferences here. One student gets his fourth
choice, three get their third choice and one gets his second choice.

For SCP2, the associated SOSM matching can thus be translated into the follow-
ing graph:

vi1

vi4

⌦⌦

vi2

vi4

;;

{{

vi2

vi1
cc

vi3
vi4

//oo vi3

vi1
TT

vi5

vi1
;;

vi5
vi2
//vi5

vi4



We see that if there is an arrow from il to ij then il would (weakly) prefer to be
assigned to M.ij /. Such a swap can only be allowed if another student, ik , prefers
M.il/ to his own assignment, that is, only if there is a directed edge from some vik

to vil
. In this manner, a group of students can form a “swap market” and they can

trade their SOSM assignments among themselves consistent with the directed graph.
Such a swap market would correspond to a cycle in the graph. Here are four different
cliques within the directed graph above (cliques denoted by unbroken arrows):

Cycle 1:

vi1

vi4

⌦⌦

vi2

vi4

vi2

vi1

vi3

vi1
TT

vi4
vi3
//

vi5

vi1

vi5
vi2

vi5

vi4

Cycle 2:

vi1

vi4

vi2

vi4

vi2

vi1

vi3

vi1

vi4
vi3

oo //

vi5

vi1

vi5
vi2

vi5

vi4
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Cycle 3:

vi1

vi4

vi2

vi4

;;

{{

vi2

vi1

vi3
vi4

vi3

vi1

vi5

vi1

vi5
vi2

vi5

vi4

Cycle 4:

vi1

vi4

⌦⌦

vi2

vi1
cc

vi3
vi4

vi3

vi1

vi4

vi2
;;

vi5

vi1

vi5
vi2

vi5

vi4

We list the assignments corresponding to each of the four cliques (note that the
students’ assignments are underlined in each matching):

M1D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M2D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M3D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M4D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1:

Observe that M1, M3, and M4 are Pareto efficient but M2 is not. In fact, if we
draw the directed graph of M2, we see that there is another cycle between i3 and i1.
Thus we could continue with another clique, which would result in M1. This raises
the question of what efficient matching should be chosen in case of multiple efficient
matchings. In this specific example, all three matchings give two students their top
choice, one student her second choice, one student her third choice, and one student
her fourth choice. Note that M4 is the one obtained earlier via EADAM with the
consent of i5 and, equivalently, via a coalition with the cabal K D fi1; i2; i4g (the
cabal loop is .i1 ! i4 ! i2 ! i1/), the accomplice set A.K/ D fi5g, and the set
X D fs2; s4g for i5 (see Section 2A). One might argue that having multiple paths
to a given outcome is, in itself, a justification to select that outcome as “best”.

Note that in all these cases, i5’s assignment stays the same; in other words, i5
can be labeled a “hopeless student” analogous to the “hopeless man” in [Huang
2006]. Looking at the graph, we see that there is no path passing through i5; there
is no chance for his situation to be improved. We can simplify the graph by taking
out the vertex corresponding to i5.
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3B. Properties of TADAP. We begin this section with an analysis of the perfor-
mance of TADAP under strategic action. We first state a key result from Kesten:

Proposition 3.4 [Kesten 2010, Proposition 4]. No Pareto efficient mechanism that
can Pareto improve upon SOSM is fully immune to strategic action.

Since TADAP produces Pareto improvements of SOSM, it follows then that it is
not strategyproof. This is consistent with other improvements upon SOSM. However,
lack of strategyproofness does not imply easy manipulability. The feasibility of
manipulation decreases as the size of the market (school district) increases. This
is analogous to our earlier assertion that substantial coalitions are hard to form
naturally on their own in the context of the SCP. Students do not have complete
information about preference profiles of other students, so potential profitable
strategic behaviors are highly unlikely. Formulating an alternative ranked list which
yields a better assignment, even with complete information on all other students
will most likely not be feasible for individual students.

Making the above more precise in technical language, we first split the schools
into categories in terms of perceived quality. Then we can prove the following (cf.
[Kesten 2010, Theorem 2]):

Theorem 3.5. Let the set of schools S be partitioned into categories of perceived
quality

S D S1 [ S2 [ � � � [ Sm with Si \ Sj D ? if i ¤ j

such that for any k; l 2 f1; : : : ; mg with k < l , each student prefers any school
in Sk to any school in Sl . Let each student’s information be symmetric for any two
schools in the same perceived quality category. Then for any student, the strategy
of truth telling stochastically dominates any other strategy when other students
behave truthfully. Thus truth telling is an ordinal Bayesian Nash equilibrium of the
preference revelation game under TADAP.

A well-studied method of strategic action by students is truncation manipulation,
one of the few tools available in such a largely incomplete information matching
game [Ehlers 2008]. However it is easy to see that in TADAP, no student benefits
from truncating her preference list; any such truncation results in fewer cliques and
fewer opportunities for that student (and for others) to improve her lot.

Note also that there is no strategy that a group of students could employ resulting
in an outcome that is not among those produced by some choice of clique using
TADAP. This is because in considering all possible cliques, we obtain all possible
Pareto improvements.

Another prominent feature of TADAP is the efficiency of all its outcomes. Each
clique followed improves the efficiency of the outcome, neutralizing to an extent
the inefficiency caused by SOSM. As each such improvement creates a Pareto
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domination of the previous matching, at the end of the algorithm, we stop at a Pareto
efficient matching. In fact, TADAP produces all efficient matchings that Pareto
dominate SOSM. We can actually prove a slightly stronger result. A straightforward
proof yields the following:

Proposition 3.6. If matching M (Pareto) dominates the SOSM matching M ⇤,
then M is realizable by TADAP up to null cliques.

Obviously, distinct Pareto efficient matchings are Pareto incomparable. At this
point we might resort to another evaluative criterion. For instance, we may wish
to then consider the matchings with minimal preference index, a criterion that
considers the sum of each player’s priority violation as a measure of “lost utility”;11

this can reduce our option size. And, if the mechanism itself includes a second
stage procedure such as TADAP or EADAM with full consent assumed, the overlap
of outcomes may be called upon to justify the subsequent modification of outcomes.
Since the overall process includes adjustments made in a standard manner to an
initial stable outcome, the “fairness” is built in. If the standard adjustments are
selected based upon criteria that include a “multiple pathway” argument, then the
EADAM or other identified outcome is strongly supported. That is, no priority
must be “waived” as that priority is part of the input, but needn’t be incorporated
into the final output matching.

The above proposition easily yields the following:

Corollary 3.7. All efficient outcomes of EADAM and CIP can be found by TADAP.

Recall that both EADAM and CIP provide us with efficiency improvements to
SOSM. However, TADAP can return all Pareto efficient matchings that dominate
SOSM so that we can compare all choices and pick the most desirable matching.

The absolute efficiency of TADAP may appeal to a utilitarian. However, this
efficiency is achieved at the expense of stability. By its very construction, TADAP is
not stable. Obviously we need to make an effort to coordinate the tradeoff between
stability and efficiency. In the school choice literature, “fairness”, “stability”,
“justified envy”, and “no priority violation” are often used interchangeably. Here
we propose a more nuanced notion of fairness (originally due to Kesten).

Since TADAP starts with the SOSM outcome as input, we are starting at a point
where student priorities are considered and respected. TADAP may then make
changes to the assignments which cause instability, manifesting itself in terms of
justified envy. However, if a student’s assigned school could not get any better under
any stable mechanism, we surmise that his “justified envy” for anybody’s assignment
should not be justified. To formalize this we make the following definition:

11See [Aksoy et al. 2013; Karaali et al. 2012] for more on the preference index. Readers interested
in other efficiency metrics might also refer to [Boudreau and Knoblauch 2010].
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Definition 3.8 (cf. [Kesten 2010]). A matching is reasonably fair if there is no
stable matching that can improve the assignment of any student. A mechanism is
reasonably fair if it always outputs reasonably fair matchings.

Then the following is a direct consequence:

Proposition 3.9. Matchings produced by TADAP are reasonably fair.

Finally we should note that cycle improvements are used in the literature in a
variety of ways. For instance Kesten [2010] describes such a model. In [Erdil and
Ergin 2008], a stable cycle improvement model is developed. In this sense, the
point of our work is to devise a scheme which incorporates any Pareto improvement
of the SOSM outcome in a cycle improvement model.12

4. Conclusion

In this paper, we introduce and investigate the properties of coalitions and cliques,
two notions that can be incorporated into a school choice mechanism to improve
the efficiency of SOSM. Our focus is on the examination of mathematical processes
for producing improvements. Both approaches we examine, coalitions and cliques,
allow us to consider opportunities for cooperation and collaboration among and
between the players and designers. We also hope that the mathematical tenor of
our approach amidst a crowded literature focusing on practical outcomes will be
aesthetically appealing and valuable for some readers.

The theoretical framework we are interested in might even have practical implica-
tions. We argue that the concerns about fairness that are prevalent in the literature of
practically implementable mechanisms for school choice may be alleviated by our
theoretical framework which demonstrates multiple pathways to produce outcomes
of mechanisms commonly in use.

Our work may also be viewed as a fresh examination of two well-known and
widely used school choice mechanisms (SOSM and EADAM). Our utilization of
the notion of “reasonably fair” (originally proposed, to the best of our knowledge,
by Kesten [2010]) captures our focus on cooperation and collaboration as a means
to address any perceived unfairness. The double meaning of reasonableness as
“somewhat” as well as “what a reasonable person would accept” is especially apropos.
The constructions here yield opportunities to improve upon SOSM while justifying
resulting priority violations in new ways.

Clearly our two modifications work by Pareto improving the baseline outcome
of SOSM. Considering a coalition or clique improvement to SOSM as part of the

12Alternatively, rather than starting with a stable outcome and then modifying, one can start
instead with an efficient outcome (such as one obtained via the top trading cycles mechanism) and
then modify it to reach a more stable matching. Just such a method is investigated in [Morrill 2013].



COALITIONS AND CLIQUES IN THE SCHOOL CHOICE PROBLEM 821

overall mechanism with an established way of selecting the best overall outcome
would allow for implementation without the need to establish approval from certain
families. While it was not our goal here to develop a practical replacement for
the well-established mechanisms now in use, we argue that the improvements
presented here can have genuine practical implications. This is in part because of
their coincidental outcomes rather than despite them. We can justify the priority
violations that result from coalition improvement and cliques by showing that the
new assignments (Pareto) dominate the SOSM assignments and can be arrived at via
multiple paths. Because many of the current school priorities in place are meant to
create some certainty/security for families, once those have been taken into account
in the initial assignment, and since we can demonstrate that no families are made
worse off, neither schools nor families should have a reason to object.

We also note that indifferences in student preferences may be incorporated into
our model. Both collaborative approaches presented (coalitions and cliques) can
work when students submit lists with indifferences. Although a considerable amount
of research has been done regarding indifferences within school priority classes,
indifference in student preferences has not been studied in as much depth. As
far as we know, this characteristic of cycle improvement models has not been
investigated before, at least in the school choice context. This can be a good avenue
to pursue further.

As a final note, we once again emphasize the fact the two notions introduced
in this paper are related to one another as well as to SOSM and EADAM. More
specifically, given a coalition C D .K; A.K// in the notation of Section 2A, we can
always construct a sequence of cliques that under TADAP yields the same outcome.
In other words, coalitional outcomes can always be obtained via TADAP as well.
Going the other way is also doable in the case of strict preference profiles: any
clique in such a context corresponds to a cabal cycle and the accomplices may be
determined afterwards by looking at the resulting priority violations. It is precisely
these overlapping and interlocking relationships between disparate processes that
intrigues us and motivates this work.
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